Skip to main content
Log in

Experimental and numerical study of natural convection in bottom-heated cylindrical cavity filled with molten salt nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper combines numerical and experimental to study the heat transfer by free convection for nanofluids of molten salt within a cavity with cylindrical shape which is heated at the bottom and releases heat at the top. The aim is to acquire the free convection laws for nanofluids of molten salt in a cylindrical cavity. It is found that after adding nanoparticles, the molten salts have lower viscosity, higher flow velocity and higher heat transfer rate, and therefore, the free convection heat transfer is enhanced. Meanwhile, nanofluids Nusselt number is larger than that of the molten salts at the same Rayleigh number. In addition, as the classical Garon’s equation cannot provide good predictions of free convection heat transfer for the nanofluids of molten salt, this paper establishes a free convection equation for the nanofluids of molten salt in a cylindrical cavity. This equation is able to predict with an error less than 20% the experimental results. Therefore, the findings can provide a basis for engineering applications of nanofluids and for designing optimal systems of heat stockpile with a single tank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Nu :

Nusselt number

Ra :

Rayleigh number

Pr :

Prandtl number

d :

Diameter of cavity (m)

I :

Electric current (A)

U :

Voltage (V)

Q T :

Total heating power of heater (W)

Q R :

Radiative heat dissipation per unit time (W)

Q :

Heat flux of natural convection (W)

A :

Heating area (m2)

h :

Heat transfer coefficient (W m−2 K−1)

T wo :

Surface temperature of external wall of thermal insulation layer (K)

T a :

Ambient temperature (K)

T w :

Bottom temperature (K)

ΔT :

Temperature difference between bottom and top surface (K)

l :

Distance between bottom and top surface (m)

T c :

Top temperature (K)

T m :

Average temperature (K)

T :

Temperature (K)

ρ :

Density (kg m−3)

λ :

Thermal conductivity (W m−1 K−1)

T c :

Top temperature (K)

T f :

Qualitative temperature (K)

ρ c :

Density at Tc temperature (kg m−3)

g :

Acceleration caused by gravity (m s−2)

ρ f :

Density of base salt (kg m−3)

ρ nf :

Density of nanofluid (kg m−3)

(Cp)f :

Specific heat of base salt (J kg−1 K−1)

(Cp)nf :

Specific heat of nanofluid (J kg−1 K−1)

μ f :

Viscosity of base salt (Pa S)

μ nf :

Viscosity of nanofluid (Pa S)

λ f :

Thermal conductivity of base salt (W m−1 K−1)

λ nf :

Thermal conductivity of nanofluid (W m−1 K−1)

v f :

Velocity of base salt (m s−1)

v nf :

Velocity of nanofluid (m s−1)

ε :

Surface emissivity ε = 0.05

σ b :

Blackbody radiation constant σb = 5.67 × 10−8 (W m−2 K−4)

ν :

Kinematic viscosity (m2 s−1)

α :

Thermal diffusivity(m2 s−1)

β :

Coefficient of thermal volume expansion (K−1)

References

  1. Duraisamy RR, Esakkimuthu GS, Paulraj J, et al. Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08759-8.

    Article  Google Scholar 

  2. Srivastva U, Malhotra RK, Kaushik SC. Review of heat transport properties of solar heat transfer fluids. J Therm Anal Calorim. 2017;130:605–21.

    Article  CAS  Google Scholar 

  3. Zhang ZL, Yuan YP, Ouyang LP, et al. Enhanced thermal properties of Li2CO3-Na2CO3-K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems. J Therm Anal Calorim. 2017;128:1783–92.

    Article  CAS  Google Scholar 

  4. Cui XM, Lu YW, Wu YT, et al. Influence of thermal stratification on discharging process of molten salt in single thermal storage tank. J Chem Ind Eng. 2018;69(6):2410–6 (in Chinese).

    CAS  Google Scholar 

  5. Ahmed SE, Mansour MA, Hussein AK, et al. MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu-water nanofluid in the presence of the heat generation and partial slip. J Therm Anal Calorim. 2019;138:1443–60.

    Article  CAS  Google Scholar 

  6. Shirazi M, Shateri A, Bayareh M. Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder. J Therm Anal Calorim. 2018;133:1061–73.

    Article  CAS  Google Scholar 

  7. Rashmi W, Khalid M, Faridah Y. CFD studies on natural convection heat transfer of AlO-water nanofluids. Heat Mass Transf. 2011;47(10):1301–10.

    Article  CAS  Google Scholar 

  8. Oztop HF, Abu-Nada E, Varol Y, et al. Computational analysis of non-isothermal temperature distribution on natural convection in nanofluid filled enclosures. Superlattices Microstruct. 2011;49(4):453–67.

    Article  CAS  Google Scholar 

  9. Mahmoodi M. Numerical simulation of free convection of nanofluid in a square cavity with an inside heater. Int J Therm Sci. 2011;50(11):2161–75.

    Article  CAS  Google Scholar 

  10. Lai FH, Yang YT. Lattice Boltzmann simulation of natural convection heat transfer of AlO/water nanofluids in a square enclosure. Int J Therm Sci. 2011;50(10):1930–41.

    Article  CAS  Google Scholar 

  11. Sokhansefat T, Kasaeian AB, Kowsary F. Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sustain Energy Rev. 2014;33(2):636–44.

    Article  CAS  Google Scholar 

  12. Mwesigye A, Huan Z, Meyer JP. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid. Appl Energy. 2015;156:398–412.

    Article  CAS  Google Scholar 

  13. Mwesigye A, Huan Z, Meyer JP. Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®;VP-1 nanofluid. Energy Convers Manag. 2016;120:449–65.

    Article  CAS  Google Scholar 

  14. Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat Mass Transf. 2003;39(8–9):775–84.

    Article  Google Scholar 

  15. Suhaib UI, Rajashekhar P, Marneni N. Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid. J Therm Anal Calorim. 2019;135:1197–209.

    Article  Google Scholar 

  16. Subramanian R, Kumar AS, Vinayagar K, et al. Experimental analyses on heat transfer performance of TiO2-water nanofluid in double-pipe counter-flow heat exchanger for various flow regimes. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08887-1.

    Article  Google Scholar 

  17. Torki M, Etesami N. Experimental investigation of natural convection heat transfer of SiO2/water nanofluid inside inclined enclosure. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08445-9.

    Article  Google Scholar 

  18. Ming XH, Pan C. Experimental investigation of heat transfer performance of molten HITEC salt flow with alumina nanoparticles. Int J Heat Mass Transf. 2017;107:1094–103.

    Article  Google Scholar 

  19. Lu YW, Yu Q, Du WB, et al. Natural convection heat transfer of molten salt in a single energy storage tank. Sci China Technol Sci. 2016;59(8):1244–51.

    Article  CAS  Google Scholar 

  20. Garon AM, Goldstein RJ. Velocity and heat transfer measurements in thermal convection. Phys Fluids. 1973;16(11):1818–25.

    Article  CAS  Google Scholar 

  21. Ren N, Wu YT, Ma CF, et al. Preparation and thermal properties of quaternary mixed nitrate with low melting point. Sol Energy Mater Sol Cells. 2014;127(4):6–13.

    Article  CAS  Google Scholar 

  22. Ren N, Wu YT, Ma CF. Experimental study of viscosity of new kind of molten salt with low melting point. J Eng Thermophys-Rus. 2012;33(3):497–500.

    CAS  Google Scholar 

  23. Chieruzzi M, Cerritelli GF, Miliozzi A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8(1):448.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Andreucabedo P, Mondragon R, Hernandez L, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Nanoscale Res Lett. 2014;9(1):582.

    Article  Google Scholar 

  25. Song WL, Lu YW, Wu YT, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt. Sol Energy Mater Sol Cells. 2018;179:66–71.

    Article  CAS  Google Scholar 

  26. Shin D, Banerjee D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications. Int J Heat Mass Transf. 2015;84:898–902.

    Article  CAS  Google Scholar 

  27. Zhang LD, Chen X, Wu YT, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application. Sol Energy Mater Sol Cells. 2016;157:808–13.

    Article  CAS  Google Scholar 

  28. Song WL. Preparation and thermal physical properties analysis of molten-salt nanocomposites. Beijing: Beijing University of Technology; 2018.

    Google Scholar 

  29. Tzou DY. Thermal instability of nanofluids in natural convection. Int J Heat Mass Transf. 2008;51(11–12):2967–79.

    Article  CAS  Google Scholar 

  30. Ghasemi B, Aminossadati SM. Brownian motion of nanoparticles in a triangular enclosure with natural convection. Int J Therm Sci. 2010;49(6):931–40.

    Article  CAS  Google Scholar 

  31. Churchill SW, Chu HHS. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int J Heat Mass Transf. 1975;18(9):1049–53.

    Article  Google Scholar 

  32. Fand RM, Brucker J. A correlation for heat transfer by natural convection from horizontal cylinders that accounts for viscous dissipation. Int J Heat Mass Transf. 1983;26(5):709–16.

    Article  Google Scholar 

  33. Morgan VT. The overall convective heat transfer from smooth circular cylinders. Adv Heat Transf. 1975;11:199–264.

    Article  Google Scholar 

  34. Tsubouchi T, Masuda H. Natural convection between horizontal concentric cylinders with density inversion of water for low Rayleigh numbers. Rep Inst High Speed Mech Jpn. 1967;190(19):205–19.

    Google Scholar 

  35. Lu YW, Li XL, Li Q, et al. Numerical simulation and experimental investigation of natural convection heat transfer of molten salt around fine wire. Sci China Technol Sci. 2013;56(7):1651–6.

    Article  CAS  Google Scholar 

  36. Lu YW, Li XL, Du WB, et al. Natural convection heat transfer of molten nitrate around horizontal cylinder. J Chem Ind Eng. 2015;66(3):949–54 (in Chinese).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant Number 51576006, the Qinghai Science and Technology Project with grant number 2017-GX-A3 and National Key Research and Development Program of China with Grant Number 2017YFB0903603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Lu, Y., Zhang, C. et al. Experimental and numerical study of natural convection in bottom-heated cylindrical cavity filled with molten salt nanofluids. J Therm Anal Calorim 141, 1207–1219 (2020). https://doi.org/10.1007/s10973-019-09112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09112-9

Keywords

Navigation