Skip to main content
Log in

Numerical study of melting effect with entropy generation minimization in flow of carbon nanotubes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Optimization of entropy generation in squeezing flow of carbon nanotubes is addressed. Nanoparticles consist of single- and multiple-walled carbon nanotubes. Heat transfer subject to melting effect is employed. Shooting technique along with the fifth-order Runge–Kutta algorithm (bvp4c) is employed for the simulation. Bejan number, entropy generation rate, velocity and temperature are studied. Nusselt number and skin friction are also discussed. Velocity intensifies for higher estimations of squeezing parameter, nanoparticle volume fraction and melting parameter, while it reduces the temperature of fluid. Nusselt number enhances with an increment in estimations of squeezing parameter, nanoparticle volume fraction and melting parameter. Rate of entropy production decays with higher nanoparticle volume fraction and squeezing parameter. Bejan number is an increasing function of squeezing parameter, while it decays with an increment in melting parameter and nanoparticle volume fraction. Furthermore, prominent behavior is shown by multiple-walled CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(u,\) \(v\) :

Velocity components

\(x\), \(y\) :

Coordinates

\(\mu_{\text{f}}\) :

Fluid dynamic viscosity

\(\nu_{\text{nf}}\) :

Kinematic nanofluid viscosity

\(\rho_{\text{f}}\) :

Fluid density

\(\nu_{\text{f}}\) :

Kinematic fluid viscosity

\(k_{\text{f}}\) :

Base fluid thermal conductivity

\((c_{\text{p}} )_{\text{f}}\) :

Specific heat of base fluid

\(f^{{^{\prime } }}\), \(\theta\) :

Dimensionless (velocity, temperature)

\(\varOmega\) :

Non-dimensional temperature difference

P 1 :

Pressure

\(T\) :

Temperature of nanoliquid

\(T_{\text{m}}\) :

Melting surface temperature

\(T_{\text{h}}\) :

Upper wall temperature

\(\mu_{\text{nf}}\) :

Nanofluid dynamic viscosity

\(S_{{{\text{G}}_{0} }}\) :

Characteristic entropy generation

\(\alpha_{\text{f}}\) :

Thermal diffusivity of base fluid

\(c_{{\text{pf}}}\) :

Specific heat of base fluid

\(k_{{\text{nf}}}\) :

Nanofluids thermal conductivity

\((c_{{\text{p}}} )_{{\text{nf}}}\) :

Specific heat of nanofluid

\(\alpha_{{\text{nf}}}\) :

Thermal diffusivity of nanofluid

\(Pr\) :

Prandtl number

\(k_{{\text{CNT}}}\) :

Thermal conductivity of CNTs

CNTs:

Carbon nanotubes

\(\phi\) :

Nanoparticle volume fraction

\(Ec_{1}\) :

Local Eckert number

\({\varvec{\uptau}}_{{\text{w}}}\) :

Shear stress

\({\text{Sq}}\) :

Squeezing parameter

\(M\) :

Melting parameter

\(T_{0}\) :

Solid surface temperature

\(c_{\text{s}}\) :

Solid surface heat capacity

\(Ec\) :

Eckert number

References

  1. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: The proceedings of the 1995 ASME. International mechanical engineering congress and exposition, San Francisco: ASME, FED 231/MD; 1999. Vol. 66, pp. 99–105.

  2. Hayat T, Muhammad K, Alsaedi A, Farooq M. Features of Darcy-Forchheimer flow of carbon nanofluid in frame of chemical species with numerical significance. J Cent South Univ. 2019;26:1260–70.

    Article  CAS  Google Scholar 

  3. Rae B, Shahraki F, Jamailahmadi M, Peyghambarzedeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127:2561–75.

    Article  Google Scholar 

  4. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim. 2019;12:1–9.

    Google Scholar 

  5. Khan MI, Muhammad K, Hayat T, Farooq S, Alsaedi A. Numerical treatment for Darcy-Forchheimer flow of carbon nanotubes due to convectively heat nonlinear curved stretching surface. Int J Numer Methods Heat & Fluid Flow. 2019. https://doi.org/10.1108/HFF-01-2019-0016.

    Article  Google Scholar 

  6. Hayat T, Muhammad K, Muhammad T, Alsaedi A. Melting heat in radiative flow of carbon nanotubes with homogeneous-heterogeneous reactions. Commun Theor Phys. 2018;69:441–8.

    Article  CAS  Google Scholar 

  7. Dinarvand S, Pop I. Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme. Adv Powder Technol. 2017;28:900–9.

    Article  CAS  Google Scholar 

  8. Muhammad K, Hayat T, Alsaedi A. Squeezed flow of Jeffrey nanomaterial with convective heat and mass conditions. Phys Scr. 2019. https://doi.org/10.1088/1402-4896/ab234f.

    Article  Google Scholar 

  9. Soltani S, Kasaeian A, Sarrafha H, Wen D. An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Sol Energy. 2017;155:1033–43.

    Article  CAS  Google Scholar 

  10. Hayat T, Muhammad K, Alsaedi A, Asghar S. Numerical study for melting heat transfer and homogeneous-heterogeneous reactions in flow involving carbon nanotubes. Results Phys. 2018;8:415–21.

    Article  Google Scholar 

  11. Ullah I, Waqas M, Hayat T, Alsaedi A, Khan MI. Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction. J Therm Anal Calorim. 2018;135:1021–30.

    Article  Google Scholar 

  12. Hayat T, Muhammad K, Farooq M, Alsaedi A. Unsteady squeezing flow of carbon nanotubes with convective boundary conditions. PLoS ONE. 2016;11:0152923.

    Google Scholar 

  13. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  14. Hayat T, Muhammad K, Alsaedi A. Melting effect in MHD stagnation point flow of Jeffrey nanomaterial. Phys Scr. 2019. https://doi.org/10.1088/1402-4896/ab210e.

    Article  Google Scholar 

  15. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part II: applications. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  Google Scholar 

  16. Hayat T, Muhammad K, Ullah I, Alsaedi A, Asghar S. Rotating squeezed flow with carbon nanotubes and melting heat. Phys Scr. 2018. https://doi.org/10.1088/1402-4896/aaef66.

    Article  Google Scholar 

  17. Majka TM, Raftopoulos KN, Pielichowski K. The influence of POSS nanoparticles on selected thermal properties of polyurethane-based hybrids. J Therm Anal Calorim. 2018;133:289–301.

    Article  CAS  Google Scholar 

  18. Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for Darcy-Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim. 2019;136:2087–95.

    Article  CAS  Google Scholar 

  19. Hayat T, Aziz A, Muhammad T, Alsaedi A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy-Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J Therm Anal Calorim. 2019;136:1769–79.

    Article  CAS  Google Scholar 

  20. Bejan A. Advanced engineering thermodynamics. Hoboken: Wiley; 2006.

    Google Scholar 

  21. Bejan A. A study of entropy generation in fundamental convective heat transfer. ASME J Heat Transf. 1979;101:718–25.

    Article  Google Scholar 

  22. Bejan A. The thermodynamic design of heat and mass transfer processes and devices. Int J Heat Fluid Flow. 1987;8:258–76.

    Article  CAS  Google Scholar 

  23. Lotfi A, Lakzian E. Entropy generation analysis for film boiling: a simple model of quenching. Eur Phys J Plus. 2016;131:1–10.

    Article  Google Scholar 

  24. Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10.

    Article  CAS  Google Scholar 

  25. Shehzad N, Zeeshan A, Ellahi R, Rashidi S. Modelling study on internal energy loss due to entropy generation for non-Darcy poiseuille flow of silver-water Nanofluid: an application of purification. Entropy. 2018;20:851. https://doi.org/10.3390/e20110851.

    Article  CAS  Google Scholar 

  26. Soltanmohammadi R, Lakzian E. Improved design of wells turbine for wave energy conversion using entropy generation. Meccanica. 2016;51:1713–22.

    Article  Google Scholar 

  27. Lakzian E, Soltanmohammadi R, Nazeryan M. A comparison between entropy generation analysis and first law efficiency in a monoplane wells turbine. Scientia Iranica B. 2016;23:2673–81.

    Article  Google Scholar 

  28. Zhu L, Yu J. Optimization of heat sink of thermoelectric cooler using entropy generation analysis. Int J Therm Sci. 2017;118:168–75.

    Article  Google Scholar 

  29. Heshmatian S, Bahiraei M. Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel: effects of Brownian diffusion, shear rate and viscosity gradient. Chem Eng Sci. 2017;172:52–65.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M, Ellahi R, Shafee A, Li Z. Numerical investigation for second law analysis of ferrofluid inside a porous semi annulus: an application of entropy generation and exergy loss. Int J Numer Meth Heat Fluid Flow. 2019;29:1079–102.

    Article  Google Scholar 

  31. Zeeshan A, Shehzad N, Abbas T, Ellahi R. Effects of radiative electro-magnetohydrodynamics diminishing internal energy of pressure-driven flow of titanium dioxide-water nanofluid due to entropy generation. Entropy. 2019;21:1–25.

    Google Scholar 

  32. Khan MI, Hayat T, Waqas M, Khan MI, Alsaedi A. Entropy generation minimization (EGM) in nonlinear mixed convective flow of nanomaterial with Joule heating and slip condition. J Mol Liq. 2018;256:108–20.

    Article  CAS  Google Scholar 

  33. Rahman RGA, Khadar MM, Megahed AM. Melting phenomenon in magnetohydrodynamics steady flow and heat transfer over a moving surface in the presence of thermal radiation. Chin Phys B. 2013;22:030202.

    Article  Google Scholar 

  34. Hayat T, Bashir G, Waqas M, Alsaedi A, Ayub M, Asghar S. Stagnation point flow of nanomaterial towards nonlinear stretching surface with melting heat. Neural Comput Appl. 2016. https://doi.org/10.1007/s00521-016-2704-y.

    Article  Google Scholar 

  35. Sheikholeslami M, Rokni HB. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 2017;114:517–26.

    Article  CAS  Google Scholar 

  36. Hayat T, Muhammad K, Farooq M, Alsaedi A. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface. AIP Adv. 2016;6:015214.

    Article  Google Scholar 

  37. Khan WA, Khan M, Irfan M, Alshomrani AS. Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids. Results Phys. 2017;7:4025–32.

    Article  Google Scholar 

  38. Hayat T, Muhammad K, Alsaedi A, Ahmad B. Melting effect in squeezing flow of third-garde fluid with non-Fourier heat flux model. Phys Scr. 2019. https://doi.org/10.1088/1402-4896/ab1c2c.

    Article  Google Scholar 

  39. Soomro FA, Usman M, Haq RU, Wang W. Melting heat transfer analysis of Sisko fluid over a moving surface with nonlinear thermal radiation via collocation method. Int J Heat Mass Transf. 2018;126:1034–42.

    Article  CAS  Google Scholar 

  40. Xue Q. Model for thermal conductivity of carbon nanotube based composites. Phys B Condense Matter. 2005;368:302–7.

    Article  CAS  Google Scholar 

  41. Hayat T, Muhammad K, Khan MI, Alsaedi A. Theoretical investigation of chemically reactive flow of water-based carbon nanotubes (single-walled and multiple walled) with melting heat transfer. Pramana J Phys. 2019. https://doi.org/10.1007/s12043-019-1722-6.

    Article  Google Scholar 

  42. Muhammad K, Hayat T, Alsaedi A, Asghar S. Stagnation point flow of basefluid (gasoline oil), nanomaterial (CNTs) and hybrid nanomaterial (CNTs + CuO): a comparative study. Mater Res Express. 2019;6(10):105003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khursheed Muhammad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaadi, F.E., Muhammad, K., Hayat, T. et al. Numerical study of melting effect with entropy generation minimization in flow of carbon nanotubes. J Therm Anal Calorim 140, 321–329 (2020). https://doi.org/10.1007/s10973-019-08720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08720-9

Keywords

Navigation