Skip to main content
Log in

Nonlinear coupled thermoelastic analysis of thermal wave propagation in a functionally graded finite solid undergoing finite strain

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, a study of nonlinear thermoelastic, transient responses and thermal wave propagation of functionally graded (FG) finite length solid under a thermal shock and surface stress loading is carried out. The coupled equations are derived from the concept of large displacement as well as finite strains. Therefore, the nonlinear Lagrangian strain–displacement expression and second Piola–Kirchhoff stress are employed in that the components of displacement and stresses are obtained in the original coordinate. Besides, the assumption of very small temperature changes compared to the reference temperature is released in the present research. The thermal wave propagation is discussed for surface stress traction and thermal shock. The thermal stress, displacement and temperature distributions are illustrated graphically for some grading patterns of FG solid, and the effects of grading patterns of the material properties on wave propagation are investigated. The obtained results indicate significant effects of volume fraction on stress and thermal wave propagation of a medium under mechanical and thermal loading. Moreover, the results show that the increase in volume fraction leads to increase in the wave speed in both different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

b :

Body force, intrinsic energy

\(c_{\upvarepsilon}\) :

Specific heat capacity

E :

Green’s strain tensor

F :

Deformation gradient

h :

Heat transfer coefficient

K :

Thermal conductivity

\(l_{\text{e}}\) :

Element length

L :

Medium length

\(p_{\text{m}}\) :

Metal properties

\(p_{\text{c}}\) :

Ceramic properties

q :

Heat flux

r :

Heat generation per unit mass

T :

Temperature

\(T_{0}\) :

Reference temperature

t :

Time

U(X,t):

Displacement vector

\(v\) :

Wave velocity

X :

Reference coordinate

\(\alpha_{\text{T}}\) :

Thermal expansion coefficient

δ :

Delta function

σ :

Traction

\(\Delta t\) :

Time increment

ρ 0 :

Density

μ :

Shear modulus

λ :

Lame constants

\( \psi_{\text{j}}^{{\text{e}}} (x) \) :

Shape functions

References

  1. Yamanoushi M, Koizumi M, Hiraii T, Shiota I. Proceedings of the first international symposium on functionally gradient materials. 1990.

  2. Shen H. Functionally graded materials nonlinear analysis of plates and shells. Abingdon-on-Thames: Taylor & Francis Group; 2009.

    Google Scholar 

  3. Fuchiyama T, Noda N. Analysis of thermal stress in a plate of functionally gradient material. JSAE. 1995;16:263–8.

    Article  CAS  Google Scholar 

  4. Markworth AJ, Ramesh KS, Parks WP. Modeling studies applied to functionally graded materials. J Mater Sci. 1995;30:2183–93. https://doi.org/10.1007/BF01184560.

    Article  CAS  Google Scholar 

  5. Tanigawa Y. Some basic thermoelastic problems for nonhomogeneous structural materials. Appl Mech Rev. 1995;48:287–300. https://doi.org/10.1115/1.3005103.

    Article  Google Scholar 

  6. Noda N. Thermal stresses in functionally graded material. J Therm Stress. 1995;48:287–300. https://doi.org/10.1115/1.3005103.

    Article  Google Scholar 

  7. Paulino GH, Jin ZH, Dodds JRH. Failure of functionally graded materials. Compr Struct Integr. 2003;2:607–44. https://doi.org/10.1016/B0-08-043749-4/02101-7.

    Article  Google Scholar 

  8. Zhao J, Li Y, Ai X. Analysis of transient thermal stress in sandwich plate with functionally graded coatings. Thin Solid Films. 2008;516:7581–7. https://doi.org/10.1016/j.tsf.2008.03.028.

    Article  CAS  Google Scholar 

  9. Myśliński P, Szparaga Ł, Kamasa P, et al. Application of dilatometry with modulated temperature for thermomechanical analysis of anti-wear coating/substrate systems. J Therm Anal Calorim. 2015;120:1609. https://doi.org/10.1007/s10973-015-4552-x.

    Article  CAS  Google Scholar 

  10. Jane KC, Lee ZY. Thermoelastic transient response of an infinitely long annular multilayered cylinder. Mech Res Commun. 1999;26:709–18. https://doi.org/10.1016/S0093-6413(99)00082-8.

    Article  Google Scholar 

  11. Wei-qiu C, Gui-ru Y, Jin-biao C. Thermoelastic stresses in a uniformly heated functionally graded isotropic hollow cylinder. J Zhejiang Univ-SCI A. 2002;3:1–5. https://doi.org/10.1007/BF02881833.

    Article  Google Scholar 

  12. Shao ZS. Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length. Int J Press Vessels Pip. 2005;82:155–63. https://doi.org/10.1016/j.ijpvp.2004.09.007.

    Article  CAS  Google Scholar 

  13. Zhao J, Ai X, Li ZY. Transient temperature fields in functionally graded materials with different shapes under convective boundary conditions. Heat Mass Transf. 2007;43:1227–32. https://doi.org/10.1007/s00231-006-0135-5.

    Article  Google Scholar 

  14. Bahtui A, Eslami MR. Coupled thermoelasticity of functionally graded cylindrical shells. Mech Res Commun. 2007;34:1–18. https://doi.org/10.1016/j.mechrescom.2005.09.003.

    Article  Google Scholar 

  15. Santos H, Soares CM, Soares CAM, Reddy JN. A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials under thermal shock. Compos Struct. 2008;86:10–21. https://doi.org/10.1016/j.compstruct.2008.03.004.

    Article  Google Scholar 

  16. Shariyat M, Lavasani SMH, Khaghani M. Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperature-dependent material properties. Eur J Mech A/Solids. 2010;29:378–91. https://doi.org/10.1016/j.euromechsol.2009.10.007.

    Article  Google Scholar 

  17. Shariyat M, Khaghani M, Lavasani SMH. Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method. Appl Math Model. 2010;34:898–918. https://doi.org/10.1016/j.apm.2009.07.007.

    Article  Google Scholar 

  18. Shariyat M, Nikkhah M, Kazemi R. Exact and numerical elastodynamic solutions for thick-walled functionally graded cylinders subjected to pressure shocks. Int J Press Vessels Pip. 2011;88:75–87. https://doi.org/10.1016/j.ijpvp.2011.01.005.

    Article  Google Scholar 

  19. Shahabian F, Hosseini SM. Stochastic dynamic analysis of a functionally graded thick hollow cylinder with uncertain material properties subjected to shock loading. Mater Des. 2010;31:894–901. https://doi.org/10.1016/j.matdes.2009.07.040.

    Article  Google Scholar 

  20. Safari-Kahnaki A, Hosseini SM, Tahani M. Thermal shock analysis and thermo-elastic stress waves in functionally graded thick hollow cylinders using analytical method. Int J Mech Mater. 2011;7:167–84. https://doi.org/10.1007/s10999-011-9157-3.

    Article  Google Scholar 

  21. Hashimoto T, Tsuji T. Thermal diffusivity measurement of polyethylene melt by a new temperature wave method. J Therm Anal. 1993;40:721. https://doi.org/10.1007/BF02546644.

    Article  CAS  Google Scholar 

  22. Hashimoto T, Morikawa J, Sawatari C. Relaxation behavior of ultradrawn poly(ethylene) film by temperature wave analysis. J Therm Anal Calorim. 2002;70:693. https://doi.org/10.1023/A:1022283515164.

    Article  CAS  Google Scholar 

  23. Steeb H, Singh J, Tomar SK. Time harmonic waves in thermoelastic material with microtemperatures. Mech Res Commun. 2013;48:8–18. https://doi.org/10.1016/j.mechrescom.2012.11.006.

    Article  Google Scholar 

  24. Privalko VP, Korskanov VV, Privalko EG, Walter R, Friedrich K. Composition-dependent properties of polyethylene/kaolin composites: VI. Thermoelastic behavior in the melt state. J Therm Anal Calorim. 2000;59:509–16. https://doi.org/10.1023/A:1010149726679.

    Article  CAS  Google Scholar 

  25. Slemrod M. Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity. Arch Ration Mech Anal. 1981;76:97–133. https://doi.org/10.1007/BF00251248.

    Article  Google Scholar 

  26. Parkus H. Thermoelasticity. New York: Springer; 1976. https://doi.org/10.1007/978-3-7091-8447-9.

    Book  Google Scholar 

  27. Hetnarski RB, Eslami MR. Thermal stresses—advanced theory and applications. Solid Mech Appl. 2009. https://doi.org/10.1007/978-1-4020-9247-3.

  28. Eslami MR, Hetnarski RB, Ignaczak J, Noda N, Sumi N, Tanigawa Y. Theory of elasticity and thermal stresses. Berlin: Springer; 2013. p. 197. https://doi.org/10.1007/978-94-007-6356-2.

    Book  Google Scholar 

  29. Morikawa J, Hashimoto T. New technique for Fourier transform thermal analysis. J Therm Anal Calorim. 2001;64:403. https://doi.org/10.1023/A:1011542625451.

    Article  CAS  Google Scholar 

  30. Truesdell C, Noll W. The non-linear field theories of mechanics, encyclopedia of physics, vol. III/3. Berlin: Springer; 1965.

    Google Scholar 

  31. Eslami MR. Finite elements methods in mechanics. Switzerland: Springer; 2014. p. 216. https://doi.org/10.1007/978-3-319-08037-6.

    Book  Google Scholar 

  32. Reddy J. An introduction to the finite element method. 2nd ed. McGraw-Hill: Texas A & M university; 1993.

    Google Scholar 

  33. Youssef M, Lehaibi E. State-space approach of two-temperature generalized thermoelasticity. J Int J Solids Struct. 2007;44:1550–62. https://doi.org/10.1007/s00419-007-0120-6.

    Article  Google Scholar 

  34. Lee TW, Sim WJ. Efficient time-domain finite element analysis for dynamic coupled thermoelasticity. Comput Struct. 1992;45:785–93. https://doi.org/10.1016/0045-7949(92)90496-M.

    Article  Google Scholar 

  35. Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08235-3.

    Article  Google Scholar 

  36. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Article  Google Scholar 

  37. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  38. Gao W, Wang WF. A neighborhood union condition for fractional (k, m)-deleted graphs. Ars Combinatoria. 2014;113A:225–33.

    Google Scholar 

  39. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  40. Gao W, Liang L, Xu TW, Zhou JX. Tight toughness condition for fractional (g, f, n)-critical graphs. J Korean Math Soc. 2014;51(1):55–65.

    Article  Google Scholar 

  41. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    Article  CAS  Google Scholar 

  42. Qin Y, Hiller JE, Meng D. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civ Eng. 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.

    Article  Google Scholar 

  43. Gao W, Zhu LL. Gradient learning algorithms for ontology computing. Comput Intell Neurosci. 2014, 438291. https://doi.org/10.1155/2014/438291.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Fotuhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirparizi, M., Fotuhi, A.R. & Shariyat, M. Nonlinear coupled thermoelastic analysis of thermal wave propagation in a functionally graded finite solid undergoing finite strain. J Therm Anal Calorim 139, 2309–2320 (2020). https://doi.org/10.1007/s10973-019-08652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08652-4

Keywords

Navigation