Skip to main content
Log in

Influence of waste products from electricity and cement industries on the thermal behaviour of Estonian clay from Kunda deposit

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of two different oil shale ashes formed, respectively, at pulverized firing and at circulated fluidized bed combustion of Estonian oil shale (OS) at electricity production, and clinker dust (CD) formed at cement production on the thermal behaviour of Estonian clay from Kunda deposit, and, for comparison, on the illitic clay from Füzérradvány (Hungary) was studied. Composition of clay with 40% of previously fired at 1050 °C clay (grog) was used as a basement one. In the blends studied the fired clay was partly or totally replaced with OS ash or CD additives. Experiments were carried out under non-isothermal condition up to 1050 °C using a Setaram Setsys 1750 thermoanalyzer coupled with Pfeiffer Omnistar Spectrometer at the heating rates of 1.25, 2.5, 5 and 10 °C min−1 in an oxidizing atmosphere containing 79% of Ar and 21% of O2. The differential isoconversional method of Friedman was applied to calculate the kinetic parameters. Depending on the origin of the additive the thermal behaviour of blends following the two-step route differentiated remarkably from the same characteristics of clays. The value of activation energy along the reaction progress varied for illitic clay and its blends with OS ash and CD additives more than based on Kunda clay, but, contrary, the average activation energy values for blends based on Kunda clay are, as a rule, bigger than based on illitic clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Singh J, Ordoñes I. Resource recovery from post-consumer waste: important lesson for the upcoming circular economy. J Clean Prod. 2016;134:342–53.

    Google Scholar 

  2. Gessdoerfer M, Savaget P, Bocken NMP, Hultink EJ. The circular economy—a new sustainability paradigm? J Clean Prod. 2017;143:757–68.

    Google Scholar 

  3. Ots A. Oil shale fuel combustion. Tallinn: Tallinna Raamatutrükikoda; 2004.

    Google Scholar 

  4. Veiderma M. Estonian oil shale—resource and usage. Oil Shale. 2003;20:295–303.

    CAS  Google Scholar 

  5. Eesti Energia annual report 2016. http://www.energia.ee/-/doc/8457332/ettevottest/pdf/annual_report_2016_eng.pdf. Accessed Oct 2017.

  6. Kuusik R, Uibu M, Kirsimäe K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale. 2005;22:407–19.

    CAS  Google Scholar 

  7. Kuusik R, Uibu M, Kirsimäe K, Mõtlep R, Meriste T. Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale. 2012;29:376–403.

    CAS  Google Scholar 

  8. Weiß P, Bentlage J. Case study 1. Kunda Nordic Tsement Lt., Estonia. Environmental management systems and certification., Book 4 in a series on environmental managementUppsala: The Baltic University Press, Printed by Nina Tryckery; 2006. p. 201–8. ISBN 91-975526-3-1.

    Google Scholar 

  9. Our responsibility. Sustainability report 2016, Heidelberg Cement Northern Europe. https://hcne-sustainability.nu/en/brochure-our-responsibility-2016. Accessed Mar 2017.

  10. Lingling X, Wei G, Tao W, Nanru Y. Study on fired bricks with replacing clay by fly ash in high volume ratio. Constr Build Mater. 2005;19:243–7.

    Google Scholar 

  11. Zimmer A, Bergmann CP. Fly ash of mineral coal as ceramic tiles raw material. Waste Manag. 2007;27:59–68.

    PubMed  CAS  Google Scholar 

  12. Dana K, Dey J, Das SK. Synergistic effect of fly ash and blast furnace slag on the mechanical strength of traditioanal porcelan tiles. Ceram Int. 2005;31:147–52.

    CAS  Google Scholar 

  13. Sokolar R, Smetanova L. Dry pressed ceramic tiles based on fly ash–clay body: influence of fly ash granulometry and pentasodium triphosphate addition. Ceram Int. 2010;36:215–21.

    CAS  Google Scholar 

  14. Sokolář R, Vodová L. The effect of fluidized fly ash on the properties of dry pressed ceramic tiles based on fly ash–clay body. Ceram Int. 2011;37:2879–85.

    Google Scholar 

  15. Cultrone G, Sebastián E. Fly ash in clayey materials to improve the quality of solid bricks. Constr Build Mater. 2009;23:1178–84.

    Google Scholar 

  16. Húlan T, Trník A, Kaljuvee T, Uibu M, Štubňa I, Kallavus U, Traksmaa R. The study of firing of a ceramic body made from illite and fluidized bed combustion fly ash. J Therm Anal Calorim. 2017;127:79–89.

    Google Scholar 

  17. Haiying Z, Youcai Z, Jingyu Q. Study on use MSWI fly ash in ceramic tile. J Hazard Mater. 2002;21:344–9.

    Google Scholar 

  18. Eliche-Quesada D, Leite-Costa J. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay brick. Waste Manag. 2016;48:323–33.

    PubMed  CAS  Google Scholar 

  19. Faria KCP, Gurgel RF, Holand JNF. Recycling of sugarcane bagasse ash waste in the production of clay bricks. J Environ Manag. 2012;101:7–12.

    CAS  Google Scholar 

  20. Kováč J, Trník A, Medved I, Vozár L. Influence of calcite in a ceramic body on its thermophysical properties. J Therm Anal Calorim. 2013;114:963–70.

    Google Scholar 

  21. Cultrone G, Sebastián E, de la Torre MJ. Mineralogical and physical behaviour of solid bricks with additives. Constr Build Mater. 2005;19:39–48.

    Google Scholar 

  22. Sedmale G, Sperberga I, Sedmalis U, Valancius Z. Formation of high-temperature crystalline phases in ceramic from illite clay and dolomite. J Eur Ceram Soc. 2006;26:3351–5.

    CAS  Google Scholar 

  23. Kaljuvee T, Štubňa I, Somelar P, Mikli V, Kuusik R. Thermal behavior of some Estonian clays and their mixtures with oil shale ash additives. J Therm Anal Calorim. 2014;118:891–9.

    CAS  Google Scholar 

  24. Kaljuvee T, Štubňa I, Húlan T, Kuusik R. Heating rate effect on the thermal behavior of some clays and the blends with oil shale ash additives. J Therm Anal Calorim. 2017;127:33–45.

    CAS  Google Scholar 

  25. Eesti Energia annual report 2015. https://www.energia.ee/-/doc/10187/pdf/concern/annual_report_2015_eng.pdf. Accessed Apr 2016.

  26. Eesti Energia annual report 2017. https://www.energia.ee/-/doc/8457332/ettevottest/investorile/pdf/annual_report_2017_eng.pdf. Accessed Apr 2018.

  27. Taylor JC. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffr. 1991;6:2–9.

    CAS  Google Scholar 

  28. Ward CR, Taylor JC, Cohen DR. Quantitative mineralogy of sandstones by X-ray diffractrometry and normative analysis. J Sediment Geol. 1999;69:1050–62.

    CAS  Google Scholar 

  29. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  30. AKTS Softwear and Setaram Instruments: a global solution for kinetic analysis and determination of the thermal stability of materials. AKTS AG. Switzerland; 2006. p. 88.

  31. Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001;20:73–80.

    CAS  Google Scholar 

  32. Fernandez R, Martirena F, Scrivener KL. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res. 2011;41:113–22.

    CAS  Google Scholar 

  33. Sahnoune F, Saheb N, Khamel B, Takkouk Z. Thermal analysis of dehydroxylation of Algerian kaolinite. J Therm Anal Calorim. 2012;107:1067–72.

    CAS  Google Scholar 

  34. Dweck J. Qualitative and quantitative characterization of Brazilian natural and organophilic clays by thermal analysis. J Therm Anal Calorim. 2008;92:129–35.

    CAS  Google Scholar 

  35. Wang H, Li C, Peng Z, Zhang S. Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 2011;105:157–60.

    CAS  Google Scholar 

  36. Paulik F, Paulik J, Arnold M. Kinetics and mechanism of decomposition of pyrite under conventional and quasi-isothermal–quasi-isobaric thermoanalytical conditions. J Therm Anal Calorim. 1982;25:313–25.

    CAS  Google Scholar 

  37. Jorgensen FRA, Moyle FJ. Phases formed during the thermal analysis of pyrite in air. J Therm Anal Calorim. 1982;25:473–85.

    CAS  Google Scholar 

  38. Pelovski Y, Petkova V. Invesigation on thermal decomposition of pyrite. Part I. J Therm Anal Calorim. 1999;56:95–9.

    CAS  Google Scholar 

  39. Hu G, Dam-Johansen K, Wedel S, Hansen JP. Decomposition and oxidation of pyrite. Prog Energy Combust Sci. 2006;32:295–314.

    CAS  Google Scholar 

  40. Shvarzman A, Kovler K, Grader GS, Shter GE. The effect of dehydroxylation/amorphization on pozzolanic activity of kaolinite. Cem Concr Res. 2003;33:405–16.

    CAS  Google Scholar 

  41. Faria KCP, Holanda JNF. Thermal study of clay ceramic pastes containing sugargrane bagasse ash waste. J Therm Anal Calorim. 2013;114:27–32.

    CAS  Google Scholar 

  42. Kaljuvee T, Trikkel A, Kuusik R. Decarbonization of natural lime-containing materials and reactivity of calcined products towards SO2 and CO2. J Therm Anal Calorim. 2001;64:1229–40.

    CAS  Google Scholar 

  43. Kaljuvee T, Toom M, Trikkel A, Kuusik R. Reactivity of oil shale ashes in the binding of SO2. J Therm Anal Calorim. 2007;88:51–8.

    CAS  Google Scholar 

  44. Cizer Ö, Rodrigues-Navarro C, Ruiz-Agudo E, Elsen J, Van Gemert D, Van Balen K. Phase and morphology evolution of carbonate precipitated by carbonation of hydrated lime. J Mater Sci. 2012;47:6151–65.

    CAS  Google Scholar 

  45. Eisazadeh A, Kassim KA, Nur H. Solid-state NMR and FTIR studies of lime stabilized montmorillonitic and lateritic clays. Appl Clay Sci. 2012;67–68:5–10.

    Google Scholar 

  46. Shoval S, Yadin E, Panczer G. Analysis of thermal phases in calcareous iron age pottery using FT-IR and Raman spectroscopy. J Therm Anal Calorim. 2011;104:515–25.

    CAS  Google Scholar 

  47. Alver BE, Dikmen G, Alver Ö. Investigation of the influence of heat treatment on the structural properies of illite-rich clay mineral using FT-IR, 29Si MAS NMR, TG and DTA methods. Anadolu Univ J Sci Technol A Appl Sci Eng. 2016;17(5):823–9.

    Google Scholar 

  48. Mozgawa W, Król M, Dyczek J, Deja J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim Acta Part A. 2000;56:1819–23.

    Google Scholar 

  49. Madejová J. FTIR techniques in clay mineral studies. Vib Spectrosc. 2003;31:1–10.

    Google Scholar 

  50. Davarcioğlu B, Çiftçi E. Investigation of central anatolian clays by FTIR spectroscopy(Arapli-Yesilhisar-Kayseri, Turkey). Int J Nat Eng Sci. 2009;3:167–74.

    Google Scholar 

  51. Frost RL, Vassallo AM. The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays Clay Miner. 1996;44:635–51.

    CAS  Google Scholar 

  52. Diko M, Ekosse G, Ogola J. Fourier transform infrared spectroscopy and thermal analysis of kaolinite clays from South Africa and Cameroon. Acta Geodyn Geomater. 2016;13:149–58.

    Google Scholar 

  53. Zhirong L, Uddin MA, Zhanxue S. FT-IR and XRD analysis of Natural Na-bentonite and Cu (II)-loaded Na-bentonite. Spectrochim Acta Part A. 2011;79:1013–6.

    Google Scholar 

Download references

Acknowledgements

This study was supported by Institutional Research Funding (IUT33-19) of the Estonian Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiit Kaljuvee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaljuvee, T., Štubňa, I., Húlan, T. et al. Influence of waste products from electricity and cement industries on the thermal behaviour of Estonian clay from Kunda deposit. J Therm Anal Calorim 138, 2635–2650 (2019). https://doi.org/10.1007/s10973-019-08319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08319-0

Keywords

Navigation