Skip to main content
Log in

An experimental investigation of heat of vaporization of nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper is devoted to measurement and prediction of the saturated flow boiling of nanofluids. In this regard, pressure–temperature variations at saturation conditions are experimentally investigated for different types of water-based nanofluids with variable volume fractions of nanoparticles. By using measured saturation temperature/pressure data as well as Clasius–Clapeyron equation, latent heat of evaporation (LHE) of nanofluids is determined and compared with that of pure water. Results of this study reveal that addition of nanoparticles to water can increase or decrease LHE depending on the type and concentration of nanoparticles and the saturation temperature. A maximum 48.7% increase in the LHE of water is achieved by adding 0.3 vol% of TiO2 nanoparticles. Based on the experimental data, a correlation for the prediction of LHE of nanofluids is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Dryout length accounts for the distance of the pipe, in the flow direction, at which the whole amount of liquid is evaporated/entrained and the vapor phase is in direct contact with the pipe wall.

Abbreviations

C i :

Coefficient as a function of concentration of nanoparticle

h fg :

Latent heat (kJ kg−1)

P :

Saturation vapor pressure (Pa)

R :

Ideal gas constant of steam (kJ kg−1 K)

T sat :

Saturation temperature (K)

T b :

Boiling point (K)

V f :

Specific volume of saturated liquid (m3)

V g :

Specific volume of saturated vapor (m3)

\(\Delta V\) :

Volume change (m3)

ρ :

Density (kg m−3)

φ :

Volume concentration of nanoparticles (%)

f:

Saturated liquid

g:

Saturated vapor

nf:

Nanofluid

sat:

Saturation

References

  1. Choi S, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: ASME international mechanical engineering congress and exposition, San Francisco, CA; 1995.

  2. Collier JG, Thome JR. Convective boiling and condensation. Oxford: Clarendon Press-Oxford; 1996.

    Google Scholar 

  3. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–20.

    Article  CAS  Google Scholar 

  4. Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, Dimelfi RJ. Novel thermal properties of nanostructured materials. Mater Sci Forum. 1999;312–314:629–34.

    Article  Google Scholar 

  5. Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci. 2005;44:367–73.

    Article  CAS  Google Scholar 

  6. Murshed SMS, Leong KC, Yang C. Thermophysical and electrokinetic properties of nanofluids: a critical review. Appl Therm Eng. 2008;28:2109–25.

    Article  CAS  Google Scholar 

  7. Murshed SMS. Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transf Eng. 2012;33:722–31.

    Article  CAS  Google Scholar 

  8. Murshed SMS, Leong KC, Yang C. Investigation of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47(2008):560–8.

    Article  CAS  Google Scholar 

  9. Murshed SMS, Nieto de Castro CA. Nanofluids: synthesis, properties and applications. New York: Nova Science Publishers Inc.; 2014.

    Google Scholar 

  10. Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52.

    Article  CAS  Google Scholar 

  11. Park KJ, Jung D. Enhancement of nucleate boiling heat transfer using carbon nanotubes. Int J Heat Mass Transf. 2007;50:4499–502.

    Article  CAS  Google Scholar 

  12. Baniamerian Z. Analytical modeling of boiling nanofluids. J Thermophys Heat Transf. 2017;31(1):136–45.

    Article  CAS  Google Scholar 

  13. Azimi H, Baniamerian Z. Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids. Heat Mass Transf. 2018. https://doi.org/10.1007/s00231-018-2353-z.

    Article  Google Scholar 

  14. Zeinal Heris S, Naser Esfahani M, Etemad S. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007;28:203–10.

    Article  Google Scholar 

  15. Henderson K, Park YG, Liu L, Jacobi A. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf. 2010;53:944–51.

    Article  CAS  Google Scholar 

  16. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125:151–5.

    Article  CAS  Google Scholar 

  17. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47:5181–8.

    Article  CAS  Google Scholar 

  18. Heris SZ, Etemad SG, Esfahany MS. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33:529–35.

    Article  Google Scholar 

  19. Chehade AA, Gualous HL, Masson SL, Fardoun F, Besq A. Boiling local heat transfer enhancement in minichannels using nanofluids. Nanoscale Res Lett. 2013;8:130–50.

    Article  Google Scholar 

  20. Ahn HS, Kim H, Jo H, Kang S, Chang W, Kim MH. Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface. Int J Multiph Flow. 2010;36(5):375–84.

    Article  CAS  Google Scholar 

  21. Kim TL, Jeong YH, Chang SH. An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid. Int J Heat Mass Transf. 2010;53:1015–22.

    Article  CAS  Google Scholar 

  22. Seung L, Seong P, Sa K, Seong K, Han S, Dong L. Critical heat flux enhancement in flow boiling of Al2O3 and SiC nanofluids under low pressure and low flow conditions. Nucl Eng Technol. 2012;44(4):429–36.

    Article  Google Scholar 

  23. Song S, Lee JH, Chang SH. CHF enhancement of SiC nanofluid in pool boiling experiment. Exp Thermal Fluid Sci. 2014;52:12–8.

    Article  CAS  Google Scholar 

  24. Garai J. Physical model for vaporization. Fluid Phase Equilib. 2009;283:89–92.

    Article  CAS  Google Scholar 

  25. Zhu L, Gu Q, Sun P, Chen W, Wang X, Xue G. Characterization of the mobility and reactivity of water molecules on TiO2 nanoparticles by 1H solid-state nuclear magnetic resonance. ACS Appl Mater Interfaces. 2013;5:10352–6.

    Article  CAS  Google Scholar 

  26. Tarasevich YI. State and structure of water in vicinity of hydrophobic surfaces. Colloid J. 2011;73:257–66.

    Article  CAS  Google Scholar 

  27. Israelachvili JN. Intermolecular and surface forces. 3rd ed. Cambridge: Academic Press; 2011.

    Google Scholar 

  28. Chen XJ, Levi AC, Tosatti EH. Hamaker constant calculations and surface melting of metals. Surf Sci. 1991;251(252):641–4.

    Article  Google Scholar 

  29. Tso CY, Chao CYH. Study of enthalpy of evaporation, saturated vapor pressure and evaporation rate of aqueous nanofluids. Int J Heat Mass Transf. 2015;84:931–41.

    Article  CAS  Google Scholar 

  30. Aslani B, Moghiman M. The sixth joint conference of iranian metallurgical engineering society and Iranian foundry men’s society, University of Tehran, December; 2012.

  31. Ameen MM, Prabhul K, Sivakumar G, Abraham PP, Jayadeep UB, Sobhan CB. Molecular dynamics modeling of latent heat enhancement in nanofluds. Int J Thermophys. 2010;31:131–1144.

    Article  Google Scholar 

  32. Mehregan M, Moghiman M. Propose a correlation to approximate nanofluid enthalpy of vaporization: a numerical study. Int Mater Mech Manuf. 2014;2(1):73–6.

    Google Scholar 

  33. Lee S, Phelan PE, Dai L, Prasher R, Gunawan A, Taylor RA. Experimental investigation of the latent heat of vaporization in aqueous nanofluids. Appl Phys Lett. 2014;104:151908.

    Article  Google Scholar 

  34. Baniamerian Z, Mashayekhi M. Experimental assessment of saturation behavior of boiling nanofluids; pressure and temperature. J ThermoPhys Heat Transf. 2017;31(3):732–8. https://doi.org/10.2514/1.T5081.

    Article  CAS  Google Scholar 

  35. Zhu D, Wu S, Wang N. Thermal physics and critical heat flux characteristics of Al2O3–H2O nanofluids. Heat Transf Eng. 2010;31(14):1213–9.

    Article  CAS  Google Scholar 

  36. Chen RH, Phuoc TX, Martello D. Effects of nanoparticales on nanofluid droplet evaporation. Int J Heat Mass Transf. 2010;53:3677–82.

    Article  CAS  Google Scholar 

  37. Baniamerian Z, Mehdipour R, Aghanajafi C. Analytical simulation of annular two-phase flow considering the four involved mass transfers. J Fluids Eng TASME. 2012;134:081301.

    Article  Google Scholar 

  38. Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  39. Cengel YA, Boles MA. Thermodynamics: an engineering approach. 8th ed. New York: McGraw-Hill; 2015.

    Google Scholar 

  40. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Ashrae handbook: fundamentals. inch-pound. Atlanta: ASHRAE; 2013.

    Google Scholar 

Download references

Acknowledgements

Thanks to the Tafresh University for the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Baniamerian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baniamerian, Z., Mehdipour, R. & Murshed, S.M.S. An experimental investigation of heat of vaporization of nanofluids. J Therm Anal Calorim 138, 645–657 (2019). https://doi.org/10.1007/s10973-019-08202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08202-y

Keywords

Navigation