Skip to main content
Log in

A comparative study and analysis of natural convection flow of MHD non-Newtonian fluid in the presence of heat source and first-order chemical reaction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat and mass transfer of fractional Jeffrey’s flow over infinite vertical plate moving exponentially with variable temperature and mass diffusion has been detailed. Additionally, first-order chemical reaction, magnetohydrodynamics and rate of heat absorption are also considered. The classical Jeffrey’s fluid model is generalized to a fractional model of non-integer-order ‘α.’ The present problem is solved by two approaches, namely, Caputo and Caputo–Fabrizio. The exact solutions for temperatures, concentrations and velocities have been obtained via Laplace transform method. The corresponding rates of heat, mass and skin friction are also computed. We have drawn a comparison approach between the solutions of two fractional models of Jeffrey’s fluid modeled with Caputo and Caputo–Fabrizio fractional derivatives by means of graphical illustration using MathCad software. Physical impact of fractional parameter ‘α’ on the Sherwood number, Nusselt number and skin friction was presented in a table and found that they are increased by increasing the value of ‘α.’ In comparison, the rates of heat and mass transfer and skin friction of Caputo fractional derivative have greater values than Caputo-Fabrizio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(u\) :

Velocity of the fluid (\({\text{ms}}^{ - 1}\))

\(T\) :

Temperature of the fluid \(({\text{K}})\)

\(C_{\text{w}}\) :

Concentration level at the plate \(( {\text{kg}}\,{\text{m}}^{ - 3} )\)

\(T_{\text{w}}\) :

Fluid temperature at the plate (K)

\(C_{\text{p}}\) :

Specific heat at a constant pressure \(({\text{j}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} )\)

\(Gm\) :

Mass Grashof number

\(Nu\) :

Nusselt number

\(Sc\) :

Schmidt number

\(M\) :

Magnetic parameter

\(t\) :

Time \(({\text{s}})\)

\(C\) :

Concentration of the fluid \(( {\text{kg}}\,{\text{m}}^{ - 3} )\)

\(C_{\infty }\) :

Concentration of the fluid far away from the plate \(({\text{kg}}\,{\text{m}}^{ - 3} )\)

\(T_{\infty }\) :

Fluid temperature far away from the plate (K)

\(g\) :

Acceleration due to gravity \(({\text{ms}}^{ - 2} )\)

\(Gr\) :

Thermal Grashof number

\(k\) :

Fluid thermal conductivity \(({\text{Wm}}^{ - 2} \,{\text{K}}^{ - 1} )\)

\(Pr\) :

Prandtl number

\(Sh\) :

Sherwood number

\(q\) :

Laplace transform parameter

\(\alpha\) :

Fractional parameter

\(\nu\) :

Kinematics viscosity of the fluid \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

\(\beta_{\text{T}}\) :

Volumetric coefficient of thermal expansion \(({\text{K}}^{ - 1} )\)

\(\lambda\) :

Jeffrey’s fluid parameter

\(\lambda_{1}\) :

Ratio of relaxation and retardation time

\(\mu\) :

Dynamic viscosity \(({\text{kg}}\,{\text{m}}^{ - 1} {\text{s}}^{ - 1} )\)

\(\rho\) :

Fluid density \(({\text{kg}}\,{\text{m}}^{ - 3} )\)

\(\beta_{\text{C}}\) :

Volumetric coefficient of mass expansion \(({\text{m}}^{ 3} \,{\text{kg}}^{ - 1} )\)

\(\lambda_{2}\) :

Retardation time \(({\text{s}})\)

References

  1. Zin NAM, Khan I, Shafie S. Thermal radiation in unsteady MHD free convection flow of Jeffrey fluid with ramped wall temperature. AIP Conf Proc. 2016;1750(030016):2016. https://doi.org/10.1063/1.4954552.

    Article  CAS  Google Scholar 

  2. Bhatti MM, Zeeshan A, Ellahi R, Shit GC. Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy–Brinkman–Forchheimer Porous medium. Adv Powder Technol. 2018;29:1189–97.

    Article  Google Scholar 

  3. Ellahi R, Alamri SZ, Basit A, Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–82.

    Article  Google Scholar 

  4. Ellahi R, Khan M, Shah NA. Combine porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate Int. J Porous Media. 2018;21(7):589–605.

    Article  Google Scholar 

  5. Zeeshan A, Ijaz N, Abbas T, Ellahi R. The sustainable characteristic of bio-bi-phase flow of peristaltic transport of MHD Jeffrey fluid in human body. Sustainability. 2018;10(8):2671.

    Article  Google Scholar 

  6. Mohanty J, Das JK, Mishra SR. Chemical reaction effect on MHD Jeffrey fluid over a stretching sheet with heat generation/absorption. Series Modell B. 2014;83:1–17.

    Google Scholar 

  7. Ahmed J, Shahzad A, Khan M, Ali R. A note on convective heat transfer of MHD Jeffrey fluid over a stretching sheet. AIP Adv. 2015;5:117117.

    Article  CAS  Google Scholar 

  8. Das K, Acharya N, Kundu PK. Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer. Alex Eng J. 2015;54:815–21.

    Article  Google Scholar 

  9. Maqbool K, Mann AB, Tiwana MH. Unsteady MHD convective flow of a Jeffrey fluid embedded in a porous medium with ramped wall velocity and temperature. Alex Eng J. 2017. https://doi.org/10.1016/j.aej.2017.02.012.

    Article  Google Scholar 

  10. Jena S, Mishra SR, Dash GC. Chemical reaction effect on MHD Jeffrey fluid flow over a stretching sheet through porous media with heat generation/absorption. Int J Appl Comput Math. 2016. https://doi.org/10.1007/s40819-016-0173-8.

    Article  Google Scholar 

  11. Imtiaz M, Hayat T, Alsaedi A. MHD Convective flow of Jeffrey fluid due to a curved stretching surface with homogeneous–heterogeneous reactions. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0161641.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ahmad K, Ishak A. MHD flow and heat transfer of a Jeffrey fluid over a stretching sheet with viscous dissipation. Malays J Mater Sci. 2016;10:311–23.

    Google Scholar 

  13. Atangana A, Botha JF. A generalized ground water flow equation using the concept of variable order derivative. Bound Value Probl. 2013;1:53–60.

    Article  Google Scholar 

  14. Atangana A, Secer A. Time-fractional coupled-the Korteweg-de Vries equations. Abstr Appl Anal. 2013;2013:947–86.

    Google Scholar 

  15. Atangana A, Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr Appl Anal. 2013;2013:8.

    Google Scholar 

  16. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl. 2015;2:1–13.

    Article  Google Scholar 

  17. Sheikh NA, Ali F, Saqib M, Khan I, et al. Comparison and analysis of Atangana–Baleanu and Caputo–Fabrizio fractional model with heat generation and chemical reaction. Results Phys. 2017;7:789–800.

    Article  Google Scholar 

  18. Khan I, Shah NA, Vieru D. Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate. Eur Phys J Plus. 2016;131:1–12.

    Article  Google Scholar 

  19. Caputo M, Fabrizio M. Applications of new time and spatial fractional derivatives with exponential kernel. Prog Fract Differ Appl. 2016;2:1–11.

    Article  Google Scholar 

  20. Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Int J Therm Sci. 2016;20(2):763–9.

    Article  Google Scholar 

  21. Shah NA, Khan I. Heat transfer analysis in second grade fluid over an oscillating vertical plate using fractional Caputo–Fabrizio derivatives. Eur Phys J Plus. 2016;10:132–414.

    Google Scholar 

  22. Zafar AA, Fetecau C. Flow over an infinite plate of a viscous fluid with non-integer order derivatives without singular kernel. Alex Eng J. 2016;55:2789–96.

    Article  Google Scholar 

  23. Tahir M, Imran MA, Raza N, Abdullah M, Aleem M. Wall slip and non-integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo–Fabrizio derivatives. Results Phys. 2017;7:1887–98.

    Article  Google Scholar 

  24. Saqib M, Ali F, Khan I, Shiekh NA, Jan SA, Haq S. Exact solutions for free convection flow of generalized Jeffrey fluid: a Caputo–Fabrizio fractional model. Alex Eng J. 2017;57:1849–58.

    Article  Google Scholar 

  25. Butt AR, Abdullah M, Raza N, Imran MA. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffrey fluid over an oscillating vertical plate via Caputo–Fabrizio time fractional derivatives. Eur Phys J Plus. 2017;132:144.

    Article  CAS  Google Scholar 

  26. Imran MA, Miraj F, Khan I, Tlili S. MHD fractional Jeffrey’s fluid flow in the presence of thermo diffusion and thermal radiation effects with first order chemical reaction and uniform heat flux. Res Phys. 2018;10:10–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Imran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$L^{ - 1} \left\{ {\frac{1}{q}\exp \left( { - y\sqrt {\frac{q + b}{q + c}} } \right)} \right\} = e^{{ - {\text{at}} - {\text{y}}}} - \frac{{y\sqrt {b - c} }}{2\sqrt \pi }\int\limits_{0}^{\infty } {\int\limits_{0}^{\text{t}} {\frac{{e^{{ - {\text{at}}}} }}{\sqrt t }\exp \left( {at - ct - \frac{{y^{2} }}{4u} - u} \right)} } \times I_{1} \left( {2\sqrt {(b - c)ut} } \right){\text{d}}t{\text{d}}u$$
$$L^{ - 1} \left\{ {\frac{{e^{{ - {\text{aq}}^{\text{b}} }} }}{{q^{\text{c}} }}} \right\} = t^{{{\text{c}} - 1}} \varPhi \left( {c, - b, - at^{{ - {\text{b}}}} } \right)$$
$$L^{ - 1} \left\{ {\frac{{e^{{{\text{a}} - {\text{b}}}} }}{{q^{\text{a}} + c}}} \right\} = t^{{{\text{b}} - 1}} E_{{{\text{a}},{\text{b}}}} \left( { - ct^{\text{a}} } \right)$$
$${\text{If}}\,F(t) = L^{ - } \left\{ {F(q)} \right\} \,{\text{and}}\,g(u,t) = L^{ - 1} \left\{ {e^{{ - {\text{uw}}({\text{q}})}} } \right\}\, {\text{then}}\,L^{ - 1} \left\{ {F[w(q)]} \right\} = \int\limits_{0}^{\infty } {f(u)g(u,t){\text{d}}u}$$
$$\begin{aligned} & \phi_{{1{\text{C}}}} (y,\,t) = L^{ - 1} \left[ {\frac{{q^{\alpha } - \eta_{1} }}{{q^{2} }}} \right] = L^{ - 1} \left[ {\frac{1}{{q^{\alpha - 2} }} - \frac{{\eta_{1} }}{{q^{2} }}} \right] = \frac{{t^{1 - \alpha } }}{\varGamma (2 - \alpha )} - \eta_{1} t, \\ & \phi_{{2{\text{C}}}} = L^{ - 1} \left[ {\frac{1}{{q^{\alpha } - \eta_{1} }}\exp \left( { - y\sqrt {Pr(q^{\alpha } - \eta_{1} )} } \right)} \right] = \int\limits_{0}^{\infty } {{\text{erf}}c\left( {\frac{{y\sqrt {Pr} }}{2\sqrt u }} \right) \cdot e^{{{\text{u}}\eta_{{_{1} }} }} \cdot \frac{1}{t}\psi \left( {0, - \alpha ; - ut^{ - \alpha } } \right)} , \\ \end{aligned}$$
$$\begin{aligned} & \varphi_{{1{\text{C}}}} (y,\,t) = L^{ - 1} \left[ {\frac{{q^{\alpha } + \eta_{2} }}{{q^{2} }}} \right] = L^{ - 1} \left[ {\frac{1}{{q^{\alpha - 2} }} + \frac{{\eta_{2} }}{{q^{2} }}} \right] = \frac{{t^{1 - \alpha } }}{\varGamma (2 - \alpha )} + \eta_{2} t, \\ & \varphi_{{2{\text{C}}}} (y,t) = L^{ - 1} \left[ {\frac{1}{{q^{\alpha } + \eta_{2} }}\exp \left( { - y\sqrt {Sc(q^{\alpha } + \eta_{2} )} } \right)} \right] = \int\limits_{0}^{\infty } {{\text{erfc}}\left( {\frac{{y\sqrt {Sc} }}{2\sqrt u }} \right) \cdot e^{{ - {\text{u}}\eta_{{_{2} }} }} \cdot \frac{1}{t}\psi \left( {0, - \alpha ; - ut^{ - \alpha } } \right)} , \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Imran, M.A., Aleem, M. et al. A comparative study and analysis of natural convection flow of MHD non-Newtonian fluid in the presence of heat source and first-order chemical reaction. J Therm Anal Calorim 137, 1783–1796 (2019). https://doi.org/10.1007/s10973-019-08065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08065-3

Keywords

Navigation