Skip to main content
Log in

Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We investigated the thermal performance of micro-hole cellular structure using Al2O3–H2O and CuO–H2O nanofluids with 0.67% and 0.4%, respectively, of volumetric concentration numerically and then validated these numerical results with the experimental results at a heating power of 345 W. We found that the thermal conductivities of Al2O3–H2O and CuO–H2O nanofluids were enhanced by 2% and 1.19%, respectively, as compared to the base fluid (water). Using Al2O3–H2O nanofluids, we achieved the minimum base temperature of 24.5 °C and 26.6 °C numerically and experimentally, respectively, for the micro-hole cellular structure. Using CuO–H2O nanofluids, we achieved the minimum base temperature of 25.5 °C and 27.7 °C numerically and experimentally, respectively. The estimated errors between obtained numerical and experimental results were 8.8% and 8.5% for Al2O3–H2O and CuO–H2O, respectively. Experimentally, we achieved the lowest base temperature of 26.6 °C and 27.7 °C using Al2O3–H2O and CuO–H2O nanofluids, respectively, which was about 17.6% and 14.5% lower than the reported temperature value of 32.3 °C using water (Tariq et al. in Therm Sci, 2018. http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98361800184T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A b :

Frontal blocked area (mm2)

A t :

Frontal total area (mm2)

A s :

Surface area (mm2)

b :

Length of square side (mm)

c :

Centre to centre distance (mm)

C nf :

Specific heat of nanofluids (kJ kg−1 K−1)

C np :

Specific heat of nanoparticles (kJ kg−1 K−1)

C bf :

Specific heat of base fluid (kJ kg−1 K−1)

d h :

Hole diameter (mm)

H :

Height (mm)

K cell :

Pressure loss coefficient

\( K_{\text{nf}} \) :

Thermal conductivity of nanofluids (W mK−1)

\( K_{\text{np}} \) :

Thermal conductivity of nanoparticles (W mK−1)

\( K_{\text{bf}} \) :

Thermal conductivity of base fluid (W mK−1)

L :

Length (mm)

LMTD:

Log of mean temperature difference (°C)

LPM:

Litres per minute

\( \dot{m} \) :

Mass flow rate (kg s−1)

ΔP :

Pressure difference (Pa)

\( \dot{Q} \) :

Heat transfer rate (W)

\( \dot{Q} \) :

Volumetric flow rate (LPM)

R BR :

Blockage ratio

R OPEN :

Open area ratio

R th :

Thermal resistance (°C/W)

T b :

Base temperature (°C)

T i :

Fluid inlet temperature (°C)

T o :

Fluid outlet temperature (°C)

t :

Wall thickness (mm)

V :

Volume of the structure (mm3)

V b :

Total volume of whole solid block (mm3)

W :

Width (mm)

w np :

Weight fraction of nanoparticles

w bf :

Weight fraction of base fluid

α sf :

Surface area density

ε :

Porosity

ρ bf :

Density of base fluid (kg m−3)

ρ np :

Density of nanoparticles (kg m−3)

ρ nf :

Density of nanofluids (kg m−3)

µnf :

Dynamic viscosity of nanofluids (kg ms−1)

µbf :

Dynamic viscosity of base fluid (kg ms−1)

\( \emptyset \) :

Volume fraction

References

  1. Tariq HA, Shoukat AA, Anwar M, Israr A, Ali HM. Water cooled micro-hole cellular structure as a heat dissipation media: an experimental and numerical study. Therm Sci. 2018; http://www.doiserbia.nb.rs/Article.aspx?ID=0354-98361800184T. Accessed 08 Oct 2018

  2. Ahmed HE, Salman BH, Kherbeet AS, Ahmed MI. Optimization of thermal design of heat sinks; a review. Int. J Heat Mass Transf. 2018;118:129–53.

    Article  CAS  Google Scholar 

  3. Li HY, Chao SM. Measurement of performance of plate-fin heat sinks with cross flow cooling. Int J Heat Mass Transf. 2009;52(13–14):2949–55.

    Article  Google Scholar 

  4. Gochman S, Ronen R, Anati I, Berkovits A, Kurts T, Naveh A, et al. The intel pentium M processor: micro architecture and performance. Int Technol J. 2003;7:21–36.

    Google Scholar 

  5. Tuckerman DB, Pease RF. High performance heat sink for VLST. IEEE Electron Device Lett EDL. 1981;2:126–9.

    Article  Google Scholar 

  6. Kandlikar SG, Upadhye HR. Optimization of micro channel geometry for direct chip cooling using single phase transfer. In: Proceedings of microchannels and minichannels-2004. New York: ASME; 2004, pp. 679–685.

  7. Jajja SA, Ali W, Ali HM, Ali AM. Water cooled minichannel heat sinks for microprocessor cooling: effect of pin spacing. Appl Therm Eng. 2014;64:76–82.

    Article  CAS  Google Scholar 

  8. Xie XL, Tao WQ, He YL. Numerical study of turbulent heat transfer and pressure drop characteristics in water-cooled minichannel heat sink. J Electron Packag. 2007;129:247–55.

    Article  Google Scholar 

  9. Nazari M, Kayhani MH. Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method. Int J Mod Phys C. 2013;24(9):1350060.

    Article  CAS  Google Scholar 

  10. Nazari M, Mohebbi R, Kayhani MH. Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: lattice Boltzmann simulation. J non-Newtonian fluid mechanics. 2014;204:38–49.

    Article  CAS  Google Scholar 

  11. Mohebbi R, Nazari M, Kayhani MH. Comparative study of forced convection of a power-law fluid in a channel with a built-in square cylinder. J Appl Mech Technol Phys. 2016;57(1):55–68.

    Article  CAS  Google Scholar 

  12. Mohebbi R, Heidari H. Lattice Boltzmann simulation of fluid flow and heat transfer in a parallel-plate channel with transverse rectangular cavities. Int J Mod Phys C. 2017;28(3):1750042.

    Article  CAS  Google Scholar 

  13. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method. Int J Mod Phys C. 2018;29(4):1850030.

    Article  Google Scholar 

  14. Albadr J, Tayal S, Alasadi M. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud Therm Eng. 2013;1(1):38–44.

    Article  Google Scholar 

  15. Rafati M, Hamidi AA, Niaser MS. Applications of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl Therm Eng. 2012;45–46:9–14.

    Article  CAS  Google Scholar 

  16. Sridhara V, Satapathy LN. Al2O3-based nanofluids: a review. Nanoscale Res Lett. 2011;6:456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zakaria I, Azmi WH, Mamat AM, Mamat R, Saidur R, Abu Talib SF, et al. Thermal analysis of Al2O3-water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study. Int J Hydrogen Energy. 2016;41(9):5096–112.

    Article  CAS  Google Scholar 

  18. Manimaran R, Palaniradja K, Alagumurt N, Sendhilnathan S, Hussain J. Preparation and characterization of copper oxide nanofluid for heat transfer applications. Appl Nanosci. 2013;4(2):163–7.

    Article  CAS  Google Scholar 

  19. Ho CJ, Wei LC, Li ZW. An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl Therm Eng. 2010;30(2–3):96–103.

    Article  CAS  Google Scholar 

  20. Arshad W, Ali HM. Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. Int J Heat Mass Transf. 2017;110:248–56.

    Article  CAS  Google Scholar 

  21. Roshani M, Miry SZ, Hanafizadeh P, Ashjaee M. Hydrodynamics and heat transfer characteristics of a miniature plate pin-fin heat sink utilizing Al2O3–water and TiO2–water nanofluids. J Therm Sci Eng Appl. 2015;7:031007.

    Article  CAS  Google Scholar 

  22. Han Z. Nanofluids with enhanced thermal transport properties. PhD Thesis, University of Maryland at College Park, College Park; 2008.

  23. Shoukat AA, Shaban M, Israr A, Shah OR, Khan MZ, Anwar M. Stability of nano-fluids and their use for thermal management of a microprocessor: an experimental and numerical study. Heat Mass Transf. 2018;54(9):2771-2782.

    Article  CAS  Google Scholar 

  24. Ashby MF, Evans AG, Fleck NF, Gibson LJ, Hutchinson JW, Wadley H. Metal foams: a design guide. Boston: Butterworth-Heineman; 2000.

    Google Scholar 

  25. Kaviany M. Principles of heat transfer in porous media. New York: Springer; 1995.

    Book  Google Scholar 

  26. Tian J, Lu TJ, Hodson HP, Queheillalt DT, Wadley HG. Cross flow heat exchange of textile cellular metal core sandwich panels. J Heat Mass Transf. 2007;50:2521–36.

    Article  Google Scholar 

  27. Zhao C. Review on thermal transport in high porosity cellular metal foams with open cells. Int J Heat Mass Transf. 2012;55:3618–32.

    Article  CAS  Google Scholar 

  28. Lu TJ. Ultralight porous metals: from fundamentals to applications. Acta Mech Sin. 2002;18:457–79.

    Article  Google Scholar 

  29. Gu S, Lu TJ, Evans AG. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. Int J Heat Mass Transf. 2001;44:2163.

    Article  Google Scholar 

  30. Evans AG, Hutchinson JW, Fleck NA, Ashby MF, Wadley H. The topological design of multifunctional cellular metals. Prog Mater Sci. 2001;46:309–27.

    Article  CAS  Google Scholar 

  31. Tian J, Kim T, Lu TJ, Hodson HP, Queheillalt DT, Wadley H. The effects of topology upon fluid-flow and heat transfer within cellular copper structures. Int J Heat Mass Transf. 2004;47:3171–3186.

    Article  CAS  Google Scholar 

  32. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.

    Article  CAS  Google Scholar 

  33. Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29(12):122009.

    Article  CAS  Google Scholar 

  34. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7518-y.

    Article  Google Scholar 

  35. Ma Y, Mohebbi R, Rashidi M, Yang Z. Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J Taiwan Inst Chem Eng. 2018. https://doi.org/10.1016/j.jtice.2018.07.026.

    Article  Google Scholar 

  36. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30(3):032001.

    Article  CAS  Google Scholar 

  37. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a ┴ shaped cavity filled by a MWCNT–Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process. 2018;125:56–66.

    Article  CAS  Google Scholar 

  38. Mohebbi R, LAKZAYI H, Sidik NA, Aziz A. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. Int J Heat Mass Transf. 2018;117:425–35.

    Article  CAS  Google Scholar 

  39. Mohebbi R, Rashidi M, Izadi M, Sidik NA, Xian HW. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.

    Article  CAS  Google Scholar 

  40. Wen T, Tian J, Lu TJ, Queheillalt DT, Wadley HG. Forced convection in metallic honeycomb structures. Int J Heat Mass Transf. 2006;49:3313–24.

    Article  Google Scholar 

  41. MB de Stadler. Optimization of the geometry of a heat sink. Charlottesville: University of Virginia; 2007.

    Google Scholar 

  42. Tian J, Lu TJ, Hodson HP, Queheillalt DT, Wadley HNG. Thermal-hydraulic performance of sandwich structures with crossed tube truss core and embedded heat pipes. In: 13th International heat pipe conference (13th IHPC), Shanghai; 2004. pp. 21–25.

  43. Hung TC, Huang YX, Yan WM. Thermal performance analysis of porous-microchannel heat sinks with different configuration designs. Int J Heat Mass Transf. 2013;66:235–43.

    Article  Google Scholar 

  44. Dixit T, Ghosh I. Low Reynolds number thermo-hydraulic characterization of offset and diamond minichannel metal heat sinks. Exp Therm Fluid Sci. 2013;51:227–38.

    Article  CAS  Google Scholar 

  45. Tariq HA, Israr A, Khan YI, Anwar M. Numerical and experimental study of cellular structures as a heat dissipation media. Heat Mass Transf. 2018. https://doi.org/10.1007/s00231-018-2439-7.

    Article  Google Scholar 

  46. Tian J, Kim T, Lu T, Hodson H, Queheillalt D, Sypeck D, et al. The effects of topology upon fluid-flow and heat transfer within cellular copper structures. Int J Heat Mass Transf. 2004;47:3171–86.

    Article  CAS  Google Scholar 

  47. Rea U, McKrell T, Hu L, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int J Heat Mass Transf. 2009;52:2042–8.

    Article  CAS  Google Scholar 

  48. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  49. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.

    Article  CAS  Google Scholar 

  50. Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  51. Xuan Y, Li Q. Heat transfer Enhancement of nanofluids. Int J Heat Fluids Flow. 2000;21:58–64.

    Article  CAS  Google Scholar 

  52. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Anwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, H.A., Shoukat, A.A., Hassan, M. et al. Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids. J Therm Anal Calorim 136, 2171–2182 (2019). https://doi.org/10.1007/s10973-018-7852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7852-0

Keywords

Navigation