Skip to main content
Log in

An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core–shell structured by cellulose

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, silicone oil as the base fluid and carbonyl iron powder with the average particle size of 2.7 µm as the disperse phase was used for magnetorheological fluid production. Nano-magnetic iron oxide particles are prepared using co-precipitation method. For identification and determination of structures of iron nanoparticle core–shell with cellulose, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed. Stretching of Fe–O bond originated from Fe3O4 group is observed at wavenumber of 660–550 cm−1. FTIR spectrum of Fe3O4 at cellulose nanoparticle shows unsymmetrical bond stretching at wavenumber of 1160 cm−1 which corresponds to the C–O–C bond. The existence of six peaks in XRD diffraction pattern of cellulose-covered nanoparticles proves the existence of Fe3O4. The morphology analysis of cellulose-covered Fe3O4 using SEM images showed a sponge-like structure as a result of coverage of Fe3O4 with cellulose. The effect of the Fe3O4 at cellulose nanoparticles and cellulose on the stability of fluid has been studied. It was observed that the sample containing 1% of Fe3O4 at cellulose nanoparticle alongside 3% cellulose stabilizer agent proved to be a very stable fluid. Viscosity and shear stress in different magnetic fields for this fluid at 25 °C was studied. Finally, Hershel–Bulkley model for estimation of yield stress at different magnetic fields was used. Results indicate an increase in yield stress in various magnetic fields by having a slope of 2 at the start, which later changes to 1.5 and becomes constant at strong magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

τ :

Tensor tension (Pa)

τ 0 :

Yield stress (Pa)

\(\dot{\gamma }\) :

Shear rate tensor (S−1)

k :

Stability index (–)

n :

Constant equation (–)

η :

Viscosity (Pa S)

I :

Electrical intensity (A)

H :

Magnetic field strength (A m−1)

T :

Temperature (°C)

R :

Correlation coefficient (–)

References

  1. Rabbani Y, Ashtiani M, Hashemabadi SH. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect. Soft Matter. 2015;11(22):4453–60.

    Article  CAS  Google Scholar 

  2. Rabbani Y, Shirvani M, Hashemabadi SH, Keshavarz M. Application of artificial neural networks and support vector regression modeling in prediction of magnetorheological fluid rheometery. Colloids Surf A Physicochem Eng Asp. 2017;520:268–78.

    Article  CAS  Google Scholar 

  3. “Magnetorheology: advances and Applications—Google Books.” [Online]. Available: https://books.google.com/books?hl=en&lr=&id=yXhFAgAAQBAJ&oi=fnd&pg=PA3&dq=%5B3%5D%09N.+Wereley,+Magnetorheology:+Advances+and+Applications:+The+Royal+Society+of+Chemistry,+2014.&ots=XnTR6mje-S&sig=0VmHQQJKT2LfVJEst9hLrZCWLz0#v=onepage&q=%5B3%5D%09N.Wer. Accessed 14 Feb 2018.

  4. Ashtiani M, Hashemabadi SH, Ghaffari A. A review on the magnetorheological fluid preparation and stabilization. J Magn Magn Mater. 2015;374:716–30.

    Article  CAS  Google Scholar 

  5. Arief I, Mukhopadhyay PK. Magnetorheological Payne effect in bidisperse MR fluids containing Fe nanorods and Fe3O4 nanospheres: a dynamic rheological study. J Alloys Compd. 2017;696:1053–8.

    Article  CAS  Google Scholar 

  6. Kim MW, Han WJ, Kim YH, Choi HJ. Effect of a hard magnetic particle additive on rheological characteristics of microspherical carbonyl iron-based magnetorheological fluid. Colloids Surf A Physicochem Eng Asp. 2016;506:812–20.

    Article  CAS  Google Scholar 

  7. Jung ID, Park JM, Yu J-H, Kang TG, Kim SJ, Park SJ. Particle size effect on the magneto-rheological behavior of powder injection molding feedstock. Mater Charact. 2014;94:19–25.

    Article  CAS  Google Scholar 

  8. Qiao X, Zhou J, Binks BP, Gong X, Sun K. Magnetorheological behavior of pickering emulsions stabilized by surface-modified Fe3O4 nanoparticles. Colloids Surf A Physicochem Eng Asp. 2012;412:20–8.

    Article  CAS  Google Scholar 

  9. Zhang Y, Bai L, Zhou W, Lu R, Gao H, Zhang S. Superior adsorption capacity of Fe3O4@nSiO2@mSiO2 core-shell microspheres for removal of congo red from aqueous solution. J Mol Liq. 2016;219:88–94.

    Article  CAS  Google Scholar 

  10. Chen Y, Xu C, Huang J, Wu D, Lv Q. Rheological properties of nanocrystalline cellulose suspensions. Carbohydr Polym. 2017;157:303–10.

    Article  CAS  Google Scholar 

  11. Salihov SV, Ivanenkov YA, Krechetov SP, Veselov MS, Sviridenkova NV, Savchenko AG, Klyachko NL, Golovin YI, Chufarova NV, Beloglazkina EK, Majouga AG. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles. J Magn Magn Mater. 2015;394:173–8.

    Article  CAS  Google Scholar 

  12. An JS, Kwon SH, Choi HJ, Jung JH, Kim YG. Modified silane-coated carbonyl iron/natural rubber composite elastomer and its magnetorheological performance. Compos Struct. 2017;160:1020–6.

    Article  Google Scholar 

  13. Zhao X, Li H, Ding A, Zhou G, Sun Y, Zhang D. Preparing and characterizing Fe3O4@cellulose nanocomposites for effective isolation of cellulose-decomposing microorganisms. Mater Lett. 2016;163:154–7.

    Article  CAS  Google Scholar 

  14. Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J. The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J Memb Sci. 2015;474:148–55.

    Article  CAS  Google Scholar 

  15. Fang FF, Kim JH, Choi HJ. Synthesis of core–shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer (Guildf). 2009;50(10):2290–3.

    Article  CAS  Google Scholar 

  16. Yu M, Qi S, Fu J, Zhu M, Chen D. Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos Sci Technol. 2017;139:36–46.

    Article  CAS  Google Scholar 

  17. Seo YP, Kwak S, Choi HJ, Seo Y. Static yield stress of a magnetorheological fluid containing Pickering emulsion polymerized Fe2O3/polystyrene composite particles. J Colloid Interface Sci. 2016;463:272–8.

    Article  CAS  Google Scholar 

  18. Heydari A, Akbari OA, Safaei MR, Derakhshani M, Alrashed A, Mashayekhi R, Shabani GAS, Zarringhalam M, Nguyen TK. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2018;131(3):2893–912.

    Article  CAS  Google Scholar 

  19. Nasiri H, Abdollahzadeh Jamalabadi MY, Sadeghi R, Safaei MR, Nguyen TK, Safdari Shadloo M. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7022-4.

    Article  Google Scholar 

  20. Chu X, Yu J, Hou Y-L. Surface modification of magnetic nanoparticles in biomedicine. Chin Phys B. 2015;24(1):014704.

    Article  Google Scholar 

  21. Arani A, Akbari OA, Safaei MR, Marzban A, Alrashed A, Ahmadi GR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.

    Article  CAS  Google Scholar 

  22. Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf Part A Appl. 2014;66(12):1321–40.

    Article  CAS  Google Scholar 

  23. Khodabandeh E, Safaei MR, Akbari S, Akbari O, Alrashed A. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018;122:1–16.

    Article  CAS  Google Scholar 

  24. Hosseini SM, Safaei MR, Goodarzi M, Alrashed A, Nguyen TK. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int J Heat Mass Transf. 2017;114:207–10.

    Article  CAS  Google Scholar 

  25. Esfahani JA, Safaei MR, Goharimanesh M, de Oliveira LR, Goodarzi M, Shamshirband S, Filho EPB. Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Technol. 2017;317:458–70.

    Article  CAS  Google Scholar 

  26. Safaei MR, Safdari Shadloo M, Goodarzi MS, Hadjadj A, Goshayeshi HR, Afrand M, Kazi SN. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8(10):168781401667356.

    Article  Google Scholar 

  27. Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016;301:1218–26.

    Article  CAS  Google Scholar 

  28. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp Therm Fluid Sci. 2016;74:265–70.

    Article  CAS  Google Scholar 

  29. Goshayeshi HR, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Therm Fluid Sci. 2015;68:663–8.

    Article  CAS  Google Scholar 

  30. Goodarzi M, Safaei MR, Vafai K, Ahmadi G, Dahari M, Kazi SN, Jomhari N. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20.

    Article  CAS  Google Scholar 

  31. Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. Arabidopsis Book. 2014;12:e0169.

    Article  Google Scholar 

  32. Hariani PL, Faizal M, Ridwan R, Marsi M, Setiabudidaya D. Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int J Environ Sci Dev. 2013;4(3):336–40.

    Article  CAS  Google Scholar 

  33. He F, Zhao D, Liu J, Roberts CB. Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res. 2007;46:29–34.

    Article  CAS  Google Scholar 

  34. Ghaffari A, Hashemabadi SH, Ashtiani M. A review on the simulation and modeling of magnetorheological fluids. J Intell Mater Syst Struct. 2015;26(8):881–904.

    Article  CAS  Google Scholar 

  35. Liu X, Lu H, Chen Q, Wang D, Zhen X. Study on the preparation and properties of silicone oil-based magnetorheological fluids. Mater Manuf Process. 2013;28(6):631–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Tavakoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabbani, Y., Hajinajaf, N. & Tavakoli, O. An experimental study on stability and rheological properties of magnetorheological fluid using iron nanoparticle core–shell structured by cellulose. J Therm Anal Calorim 135, 1687–1697 (2019). https://doi.org/10.1007/s10973-018-7538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7538-7

Keywords

Navigation