Skip to main content
Log in

The influence of water-soluble impurities on thermal dehydration kinetics of phosphogypsum in self-generated atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The paper presents the results of studies of the effect of water-soluble impurities on the thermal dehydration of phosphogypsum in a self-generated atmosphere, which are obtained by thermogravimetry and differential scanning calorimetry. For comparison, the results of the thermal dehydration of gypsum are given. The information about the change in activation energy depending on the extent of the dehydration and the effect of temperature on the mechanism of the dehydration is obtained by the use of integral isoconversional and model-fitting methods. It has been established that water-soluble impurities have a significant influence on the kinetics of the dehydration. It has been shown that in the thermal dehydration of gypsum an abnormal change in the reaction rate and activation energy is observed. In the dehydration of phosphogypsum, this phenomenon is not observed. This is due to the impact of the water-soluble impurities on the recrystallization of an intermediate amorphous phase during the thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Andreev MV, Brodskiy AA, Zabeleshenskiy YA, Zorina EA, Klenitskiy AI, Kochetkov VN, Rodin VI, Evenchik SD. Chapter 9. Economy of production of phosphorus-containing fertilizers. In: Andreev MV, Brodskiy AA, Zabeleshenskiy YA, Zorina EA, Klenitskiy AI, Kochetkov VN, Rodin VI, Evenchik SD, editors. Technology of phosphorus and complex fertilizers. Moscow: Khimia; 1987. p. 397–433.

    Google Scholar 

  2. Ivanitskiy VV, Klassen PV, Stonis SN, Evenchik SD, Yakovleva ME. Chapter 1. Phosphogypsum. In: Ivanitskiy VV, Klassen PV, Stonis SN, Evenchik SD, Yakovleva ME, editors. Phosphogypsum and its use. Moscow: Khimia; 1990. p. 8–47.

    Google Scholar 

  3. Heffner P, Prud’momme M. Fertilizer Outlook 2016–2020, 84th IFA Annual Conference, Moscow. 30 May–1 June 2016. http://www.fertilizer.org/imis20/images/Library_Downloads/2016_IFa_Moscow_Summary.pdf.

  4. Tayibi H, Choura M, Lopez FA, Alguacil FJ, Lopez-Delgado A. Environmental impact and management of phosphogypsum. J Environ Manag. 2009;90:2377–86. https://doi.org/10.1016/j.jenvman.2009.03.007.

    Article  CAS  Google Scholar 

  5. Hentati O, Abrantes N, Caetano AL, Bouguerra S, Goncalves F, Römbke J, Pereira R. Phosphogypsum as a soil fertilizer: ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J Hazard Mater. 2015;294:80–9. https://doi.org/10.1016/j.jhazmat.2015.03.034.

    Article  CAS  PubMed  Google Scholar 

  6. Kuryatnyk T, Angulski da Luz C, Ambroise J, Pera J. Valorization of phosphogypsum as hydraulic binder. J Hazard Mater. 2008;160:681–7. https://doi.org/10.1016/j.jhazmat.2008.03.014.

    Article  CAS  PubMed  Google Scholar 

  7. Cuadri AA, Navarro FJ, García-Morales M, Bolívar JP. Valorization of phosphogypsum waste as asphaltic bitumen modifier. J Hazard Mater. 2014;279:11–6. https://doi.org/10.1016/j.jhazmat.2014.06.058.

    Article  CAS  PubMed  Google Scholar 

  8. Crangle, Jr. RD. Gypsum (advance release), 2014 Minerals Yearbook. U.S. Geological Survey, November 2016. https://minerals.usgs.gov/minerals/pubs/commodity/gypsum/myb1-2014-gypsu.pdf.

  9. Ball BC, Norwood LS. Studies in the system calcium sulphate–water. Part III. Kinetics of dehydration of α-calcium sulphate hemihydrate. J Chem Soc A Inorg Phys Theor. 1970. https://doi.org/10.1039/J19700001476.

    Article  Google Scholar 

  10. Christensen AN, Olesen M, Cerenius Y, Jensen TR. Formation and transformation of five different phases in the CaSO4–H2O system: crystal structure of the subhydrate β-CaSO4·0.5H2O and soluble anhydrite CaSO4. Chem Mater. 2008;20:2124–32. https://doi.org/10.1021/cm7027542.

    Article  CAS  Google Scholar 

  11. Ball BC, Norwood LS. Studies in the system calcium sulphate–water. Part I. Kinetics of dehydration of calcium sulphate dihydrate. J Chem Soc A Inorg Phys Theor. 1969. https://doi.org/10.1039/J19690001633.

    Article  Google Scholar 

  12. Abriel W, Reisdorf K, Pannetier J. Dehydration reactions of gypsum: a neutron and X-ray diffraction study. J Solid State Chem. 1990;85:23–30. https://doi.org/10.1016/S0022-4596(05)80055-6.

    Article  CAS  Google Scholar 

  13. Lopez FA, Tayibi H, Garcia-Diaz I, Alguacil FJ. Thermal dehydration kinetics of phosphogypsum. Mater Constr. 2015. https://doi.org/10.3989/mc.2015.07214.

    Article  Google Scholar 

  14. Lou W, Guan B, Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J Therm Anal Calorim. 2011;104:661–9. https://doi.org/10.1007/s10973-010-1100-6.

    Article  CAS  Google Scholar 

  15. Paulik F, Paulik J, Arnold M. Thermal decomposition of gypsum. Thermochim Acta. 1992;200:195–204. https://doi.org/10.1016/0040-6031(92)85115-C.

    Article  CAS  Google Scholar 

  16. Isa K, Okuno H. Thermal decomposition of calcium sulfate dehydrate under self-generated atmosphere. Bull Chem Soc Jpn. 1982;55:3733–7. https://doi.org/10.1246/bcsj.55.3733.

    Article  CAS  Google Scholar 

  17. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92. https://doi.org/10.1002/app.1961.070051506.

    Article  CAS  Google Scholar 

  18. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42. https://doi.org/10.1002/app.1962.070062406.

    Article  CAS  Google Scholar 

  19. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  20. Flynn JH, Wall LA. A quick, direct method for the determination of action energy from thermogravimetric data. J Polym Sci Part C Polym Lett. 1966;4:323–8. https://doi.org/10.1002/pol.1966.110040504.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Sunol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. https://doi.org/10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  22. Hammam MAS, Abdel-Rahim MA, Hafiz MM, Abu-Sehly AA. New combination of non-isothermal kinetics-revealing methods. Study of Se90Te10 powders with heterogenius particle sizes and shapes. J Therm Anal Calorim. 2017;128:1391–405. https://doi.org/10.1007/s10973-017-6086-x.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Wight CA. Isothermal and non-isothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem A. 1997;101:8279–84. https://doi.org/10.1021/jp971889h.

    Article  CAS  Google Scholar 

  24. Ghaderi F, Nemati M, Siahi-Shadbsd MR, Valizadeh H, Monajjemzadeh F. Evaluation of activation energy conformity derived from model free non-isothermal predictions and Arrhenius isothermal results. The case of hydrochlorothiazide–lactose reaction. J Therm Anal Calorim. 2017;130:1417–27. https://doi.org/10.1007/s10973-017-6279-3.

    Article  CAS  Google Scholar 

  25. Andreev MV, Brodskiy AA, Zabeleshenskiy YA, Zorina EA, Klenitskiy AI, Kochetkov VN, Rodin VI, Evenchik SD. Chapter 2. Production of phosphoric acid. In: Andreev MV, Brodskiy AA, Zabeleshenskiy YA, Zorina EA, Klenitskiy AI, Kochetkov VN, Rodin VI, Evenchik SD, editors. Technology of phosphorus and complex fertilizers. Moscow: Khimia; 1987. p. 61–116.

    Google Scholar 

  26. Follner S, Wolter A, Helming K, Silber C, Bartels H, Follner H. On the real structure of gypsum crystals. Cryst Res Technol. 2002;37:207–18. https://doi.org/10.1002/1521-4079(200202)37:2/3<207::AID-CRAT207>3.0.CO;2-L.

    Article  CAS  Google Scholar 

  27. Lü P, Fei D, Dang Y. Effects of calcium monohydrogenphosphate on the morphology of calcium sulfate whisker by hydrothermal synthesis. Can J Chem Eng. 2014;92:1709–13. https://doi.org/10.1002/cjce.22037.

    Article  CAS  Google Scholar 

  28. Kruger A, Focke WW, Kwela Z, Fowles R. Effect of ionic impurities on the crystallization of gypsum in wet-process phosphoric acid. Ind Eng Chem Res. 2001;40:1364–9. https://doi.org/10.1021/ie000478b.

    Article  CAS  Google Scholar 

  29. Hasson D, Addai-Mensah J, Metcalfe J. Filterability of gypsum crystallized in phosphoric acid solution in the presence of ionic impurities. Ind Eng Chem Res. 1990;29:867–75. https://doi.org/10.1021/ie00101a023.

    Article  CAS  Google Scholar 

  30. Kruger A, Focke WW, Kwela Z. Effect of ferrous and ferric iron impurities on the crystallization of gypsum and sludge formation in wet-process phosphoric acid. Chem Eng Commun. 2002;189:684–94. https://doi.org/10.1080/00986440211740.

    Article  CAS  Google Scholar 

  31. Jun L, Jian Hua W, Yun Xiang Z. Effects of the impurities on the habit of gypsum in wet-process phosphoric acid. Ind Eng Chem Res. 1997;36:2657–61. https://doi.org/10.1021/ie960422a.

    Article  Google Scholar 

  32. Palou M, Kuzielova E, Zemlicka M, Novotny R, Masilko J. The effect of metakaoline upon the formation of ettringite in metakaoline–lime–gypsum ternary systems. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6885-0.

    Article  Google Scholar 

  33. Jo D, Leonardo RS, Cartledge FK, Mendoza Reales OA, Toledo Filho RD. Gypsum content determination in Portland cements by thermogravimetry. J Therm Anal Calorim. 2016;123:1053–62. https://doi.org/10.1007/s10973-015-5078-y.

    Article  CAS  Google Scholar 

  34. Antar K, Jemal M. A thermogravimetric study into the effects of additives and water vapor on the reduction of gypsum and Tunisian phosphogypsum with graphite or coke in a nitrogen atmosphere. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6871-6.

    Article  Google Scholar 

  35. Lyakhov NZ, Boldyrev VV. Kinetics and mechanism of the dehydration of crystal hydrates. Rus Chem Rev. 1972;41:919–28. https://doi.org/10.1070/RC1972v041n11ABEH002103.

    Article  Google Scholar 

  36. Galwey AK. Structure and order in thermal dehydrations of crystalline solids. Thermochim Acta. 2000;355:181–238. https://doi.org/10.1016/S0040-6031(00)00448-2.

    Article  CAS  Google Scholar 

  37. Ball MC, Urea RG. Studies in the system calcium sulphate–water Part II The kinetics of dehydration of β-CaSO4·1/2H2O. J Chem Soc A Inorg Phys Theor. 1970. https://doi.org/10.1039/j19700000528.

    Article  Google Scholar 

  38. Dollimore D. The influence of the environmental on the thermal decomposition of oxysalts. J Therm Anal Calorim. 1977;11:185–200. https://doi.org/10.1007/BF01909956.

    Article  CAS  Google Scholar 

  39. Makatun VN, Shchegrov LN. State of water in inorganic crystal hydrates and the characteristic features of their dehydration. Russ Chem Rev. 1972;41:905–18. https://doi.org/10.1070/RC1972v041n11ABEH002102.

    Article  Google Scholar 

  40. Mandal PK, Mandal TK. Anion water in gypsum (CaSO4·2H2O) and hemihydrate (CaSO4·1/2H2O). Cem Concr Res. 2002;32:313–6. https://doi.org/10.1016/S0008-8846(01)00675-5.

    Article  CAS  Google Scholar 

  41. Okazaki S, Yamazaki M. The character of acid sites on the gypsum surface. Bull Chem Soc Jpn. 1981;54:436–40. https://doi.org/10.1246/bcsj.54.436.

    Article  CAS  Google Scholar 

  42. Peng Y, Zhu Z, Braatz RD, Myerson AS. Gypsum crystallization during phosphoric acid production: modeling and experiments using the mixed–solvent–electrolyte thermodynamic model. Ind Eng Chem Res. 2015;54:7914–24. https://doi.org/10.1021/acs.iecr.5b01763.

    Article  CAS  Google Scholar 

  43. Kurteva OI, Brutskus EB. On the solubility of calcium sulphate in a mixture of acids H3PO4 + H2SO4 and H3PO4 + H2SiF6. Zh Prikl Khim. 1999;31:1714–22.

    Google Scholar 

  44. Sestak J. Chapter 8. Mechanism and kinetics of heterogeneous non-catalytic reactions. In: Sestak J, editor. Theory of thermal analysis: physicochemical properties of solid inorganic substances. Moscow: Mir; 1987. p. 186–222.

    Google Scholar 

  45. Strydom CA, Hudson-Lamb DL, Potgieter JH, Dagg E. The thermal dehydration of synthetic gypsum. Thermochim Acta. 1995;269–270:631–8. https://doi.org/10.1016/0040-6031(95)02521-9.

    Article  Google Scholar 

  46. Kontogeorgos DA, Founti MA. Gypsum board dehydration kinetics at autogenous water vapour partial pressure. Thermochim Acta. 2012;545:141–7. https://doi.org/10.1016/j.tca.2012.07.009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Gorbovskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbovskiy, K.G., Ryashko, A.I., Kazakov, A.I. et al. The influence of water-soluble impurities on thermal dehydration kinetics of phosphogypsum in self-generated atmosphere. J Therm Anal Calorim 133, 1549–1562 (2018). https://doi.org/10.1007/s10973-018-7272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7272-1

Keywords

Navigation