Skip to main content
Log in

Using thermal analysis and kinetic calculation method to assess the thermal stability of 2,2′-azobis-(2-methylbutyronitrile)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Azo compounds, which readily show self-reactive traits, are extensively used in solution radical polymerization. If the phase of reaction is changed, such as in an endothermic process is weaker than in the exothermic decomposition process, it may cause serious fires and explosions. To ensure thermal safety of azo initiators in the process of creation, the commonly used oil-soluble azo initiators, 2,2′-azobis-(2-methylbutyronitrile), or so-called AMBN, are chosen to be explored. In this study, thermal decomposition characteristics under non-isothermal were obtained using differential scanning calorimetry. The composed data can be input into an equation such as isoconversional differential method with advanced thermal analysis technique to evaluate the cardinal thermal hazard for AMBN thermokinetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor of Arrhenius equation (min−1)

A (α):

Pre-exponential factor of Arrhenius equation at conversion α (min−1)

\(A^{\prime }\,(\alpha )\) :

Modified pre-exponential factor by a product of A (α) and f (α) (min−1)

\(\alpha\) :

Reaction conversion (dimensionless)

\(\beta\) :

Heating rate (°C min−1)

C o :

Initial concentration of the reaction (g cm−3)

C :

Concentration of the reaction (g cm−3)

C p :

Specific heat of material (J g−1 K−1)

E a :

Apparent activation energy (kJ mol−1)

E (α):

Apparent activation energy at conversion α (kJ mol−1)

f (α):

Reaction equation (dimensionless)

h :

Heat exchange capability index of the cooling system (kJ m−2 K−1 min−1)

k :

Reaction rate constant (dimensionless)

n :

Reaction order (dimensionless)

m :

Mass of material (g)

ΔH d :

Heat of decomposition (J g−1)

ΔH t :

Heat of decomposition at t (J g−1)

ΔH total :

Total heat of decomposition (J g−1)

Q g :

Heat production rate (kJ min−1)

Q r :

Heat discharge rate (kJ min−1)

Q r1 :

Heat discharge rate by high cooling medium (kJ min−1)

Q r2 :

Heat discharge rate by cooling system (kJ min−1)

Q r3 :

Heat discharge rate by low cooling system (kJ min−1)

R :

Gas constant (8.31415 J K−1 mol−1)

r :

Reaction rate (mol l−1 s−1)

S :

Effective heat exchange area (m2)

T :

Process temperature (K)

T 0 :

Apparent exothermic temperature (K)

T P :

Temperature at the maximum heat release in reaction (K)

T a :

Surrounding temperature under cooling system (K)

T S :

Temperature at the steady state which occurs at the intersection point of curves q g and q r

t :

Reaction time (min)

T C :

Critical ignition temperature (K)

T CE :

Critical extinguished temperature (K)

T MI :

Cutoff point between curves Q g and Q r at the highest and lowest cooling efficient system (K)

T SE :

Stable point of extinguished temperature (K)

T SI :

Stable point of ignition temperature (K)

T SL :

Stable point at low temperature (K)

T SH :

Stable point at high temperature (K)

V :

Volume of process instruments (m3)

X A :

Fractional conversion (dimensionless)

References

  1. Liu SH, Yu YP, Lin YC, Weng SY, Hsieh TF, Hou HY. Complex thermal evaluation for 2,2-azobis(isobutyronitrile) by non-isothermal and isothermal kinetic analysis methods. J Therm Anal Calorim. 2013;112:1361–7.

    Google Scholar 

  2. Roduit B, Hartmann M, Folly P, Sarbach A, Brodard P, Baltensperger R. Determination of thermal hazard from DSC measurements. Investigation of self-accelerating decomposition temperature (SADT) of AIBN. J Therm Anal Calorim. 2014;117:1017–26.

    Article  CAS  Google Scholar 

  3. Lin CP, Tseng JM, Chang YM, Liu SH, Cheng YC, Shu CM. Modeling liquid thermal explosion reactor containing tert-butyl peroxybenzoate. J Therm Anal Calorim. 2010;102:587–9.

    Article  CAS  Google Scholar 

  4. You ML, Tseng JM, Liu MY, Shu CM. Runaway reaction of lauroyl peroxide with nitric acid by DSC. J Therm Anal Calorim. 2010;102:535–9.

    Article  CAS  Google Scholar 

  5. Luo KM, Chang JG, Lin SH, Chang CT, Yeh TF, Hu KH, Kao CS. The criterion of critical runaway and stable temperatures in cumene hydroperoxide reaction. J Loss Prev Process Ind. 2001;14:229–39.

    Article  Google Scholar 

  6. Tsai YT, You ML, Qian XM, Shu CM. Calorimetric techniques combined with various thermokinetic models to evaluate incompatible hazard of tert-butyl peroxy-2-ethyl hexanoate mixed with metal ions. Ind Eng Chem Res. 2013;52:8206–15.

    Article  CAS  Google Scholar 

  7. Lu KT, Luo KM, Lin PC, Hwang KL. Critical runaway conditions and stability criterion of RDX manufacture in continuous stirred tank reactor. J Loss Prev Process Ind. 2005;18:1–11.

    Article  Google Scholar 

  8. Li XR, Wang XL, Koseki H. Study on thermal decomposition characteristics of AIBN. J Hazard Mater. 2008;159:13–8.

    Article  CAS  Google Scholar 

  9. Boswell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18:353–8.

    Article  CAS  Google Scholar 

  10. Marco E, Cuartielles S, Peña JA, Santamaria J. Simulation of the decomposition of di-cumyl peroxide in an ARSST unit. Thermochim Acta. 2002;362:49–58.

    Article  Google Scholar 

  11. Snee TJ, Barcons C, Hernandez H, Zaldivar JM. Characterisation of an exothermic reaction using adiabatic and isothermal calorimetry. J Therm Anal Calorim. 1992;38:2729–47.

    Article  CAS  Google Scholar 

  12. Li XR, Koseki H. SADT prediction of autocatalytic material using isothermal calorimetry analysis. Thermochim Acta. 2005;431:113–6.

    Article  CAS  Google Scholar 

  13. Carmona VB, Oliveira RM, Silva WTL, Mattoso LHC, Marconcini JM. Nanosilica from rice husk: extraction and characterization. Ind Crop Prod. 2013;43:291–6.

    Article  CAS  Google Scholar 

  14. Lin CP, Chang CP, Chou YC, Chu YC, Shu CM. Modeling solid thermal explosion containment on reactor HNIW and HMX. J Hazard Mater. 2010;176:549–58.

    Article  CAS  Google Scholar 

  15. Chang CW, Tseng JM, Horng JJ, Shu CM. Thermal decomposition of carbon nanotube/Al2O3 powders by DSC testing. Compos Sci Technol. 2008;68:2954–9.

    Article  CAS  Google Scholar 

  16. Bartknecht W. Explosions: course, prevention, and protection. New York: Springer; 1981.

    Book  Google Scholar 

  17. Liu SH, Hou HY. Advanced technology of thermal decomposition for AMBN and ABVN by DSC and VSP2. J Therm Anal Calorim. 2015;116:1361–7.

    Article  Google Scholar 

  18. Semenov NN. Thermal theory of combustion and explosion. Usp Fiz Nauk. 1940;23:4–17.

    Article  Google Scholar 

  19. Semenov NN. Zur theorie des verbrennungsprozesses. Z Phys Chem. 1928;48:571–3.

    CAS  Google Scholar 

  20. Morbidelli M, Varma AA. Generalized criterion for parametric sensitivity: application to thermal explosion theory. Chem Eng Sci. 1988;43:91–8.

    Article  CAS  Google Scholar 

  21. Wu SH. Runaway reaction and thermal explosion evaluation of cumene hydroperoxide (CHP) in the oxidation process. Thermochim Acta. 2013;559:92–7.

    Article  CAS  Google Scholar 

  22. Malow M, Wehrstedt K, Manolov M. Thermal decomposition of AIBN Part A: Decomposition in real scale packages and SADT determination. Thermochim Acta. 2015;621:1–5.

    Article  CAS  Google Scholar 

  23. Moukhina E. Thermal decomposition of AIBN Part C: SADT calculation of AIBN based on DSC experiments. Thermochim Acta. 2015;621:25–35.

    Article  CAS  Google Scholar 

  24. Eigenberger G, Schuler H. Reactor stability and safe reaction engineering. Int Chem Eng. 1989;29:12–9.

    Google Scholar 

  25. Villermaux J, Georgakis C. Current problems concerning batch reactions. Int Chem Eng. 1991;31:434–41.

    Google Scholar 

  26. Lee RY, Hou HY, Tseng JM, Chang MK, Shu CM. Reaction hazard analysis for the thermal decomposition of cumene hydroperoxide in the presence of sodium hydroxide. J Therm Anal Calorim. 2008;93:269–70.

    Article  CAS  Google Scholar 

  27. Wu KW, Hou HY, Shu CM. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC. J Therm Anal Calorim. 2006;83:41–4.

    Article  CAS  Google Scholar 

  28. Kohlbrand HT. The use of SimuSolv in the modeling of ARC (accelerating rate calorimeter) data, international symposium on runaway reactions. New York: AIChE; 1989. p. 86–111.

    Google Scholar 

  29. Lu KT, Yang CC, Lin PC. The criteria of critical runaway and stable temperatures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid. J Hazard Mater. 2006;135:319–27.

    Article  CAS  Google Scholar 

  30. Lu KT, Luo KM, Lin SH, Su SH, Hu KH. The acid-catalyzed phenol–formaldehyde reaction: critical runaway conditions and stability criterion. Process Saf Environ Prot. 2004;82:37–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Dr. Bertrand Roduit of AKTS AG TechnoArk 1 3960 Siders, Switzerland, for providing technical assistance. The authors would also like to thank Dr. Kuo-Ming Luo for his help on the measurements of critical parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Min Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SH., Cao, CR., Lin, YC. et al. Using thermal analysis and kinetic calculation method to assess the thermal stability of 2,2′-azobis-(2-methylbutyronitrile). J Therm Anal Calorim 131, 545–553 (2018). https://doi.org/10.1007/s10973-017-6586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6586-8

Keywords

Navigation