Skip to main content
Log in

Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polyethylene glycol (PEG) as phase change materials has been extensively studied. However, it is difficult to uniformly disperse the PEG in the unmodified matrix material owing to the impregnation problem. It is therefore challenging to overcome the shortcoming of low thermal conductivity. In order to solve this problem, carbon microspheres (CMPs) prepared by the hydrothermal method is firstly proposed as the supporting matrix for preparation of PEG composite. The PEG/CMPs composite is prepared via a mutual diffusion methodology in a high-temperature environment. The test result shows the CMPs nano-material has rich oxygen-based functional groups and can be uniformly dispersed in the PEG phase. As the carbon content increases, the CMPs become gradually connected in the PEG/CMPs composite, which can result in a network with good thermal conductivity. Compared with the thermal conductivity of pure PEG, the thermal conductivity of the composite is increased by 65.07%. Owing to the existence of hydrogen bonds in the composite, the crystallinity fraction of the PEG is in the range of 102–105%. It means that the test result is higher than the theoretical value of latent heat for the composite. Finally, its cycling performance was measured. After 500 thermal cycles, the phase transition temperature of the composite remains almost constant, and the latent heat values of the melting and freezing decrease by 1.05 and 1.45%, respectively. The PEG/CMPs composite would be a promising material for thermal energy storage applications and can be used in various engineering disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

T :

Temperature (°C)

T C :

Crystallization temperature (°C)

T C,P :

Peak temperature during crystallization process (°C)

T M :

Melting temperature (°C)

T M,P :

Peak temperature during melting process (°C)

T :

Supercooling between T M,P and T C,P (°C)

F c :

Crystallization fraction (%)

H :

Latent heat (J g−1)

Β :

Mass fraction of PEG in the composite (%)

K :

Thermal conductivity (W m−1 K−1)

α :

Thermal diffusivity (m2 s−1)

ρ :

Density (kg m−3)

C p :

Specific heat capacity (J kg−1 K−1)

References

  1. Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98.

    Article  CAS  Google Scholar 

  2. Yuan Y, Gao X, Wu H, Zhang Z, Cao X. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: method and model development. Energy. 2017;119:817–33.

    Article  Google Scholar 

  3. Zeng J, Cao Z, Yang D, Xu F, Sun L, Zhang X, Zhang L. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009;95(2):507–12.

    Article  CAS  Google Scholar 

  4. Yuan Y, Zhang H, Zhang N, Sun Q, Cao X. Effect of water content on the phase transition temperature, latent heat and water uptake of PEG polymers acting as endothermal-hydroscopic materials. J Therm Anal Calorim. 2016;126:699–708.

    Article  CAS  Google Scholar 

  5. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65(10):67–123.

    Article  CAS  Google Scholar 

  6. Sarı A, Alkan C, Biçer A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid–solid phase change materials for thermal energy storage. Mater Chem Phys. 2012;133(1):87–94.

    Article  Google Scholar 

  7. Sharma RK, Ganesan P, Tyagi VV, Mahlia TMI. Accelerated thermal cycle and chemical stability testing of polyethylene glycol (PEG) 6000 for solar thermal energy storage. Sol Energy Mater Sol C. 2016;147:235–9.

    Article  CAS  Google Scholar 

  8. Zhang L, Zhu J, Zhou W, Wang J, Wang Y. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials. Energy. 2012;39(1):294–302.

    Article  CAS  Google Scholar 

  9. Zalba B, Marίn JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.

    Article  CAS  Google Scholar 

  10. Wensel J, Wright B, Thomas D, Douglas W, Mannhalter B, Cross W, Hong H, Kellar J, Smith P, Roy W. Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes. Appl Phys Lett. 2008;92(2):1–3.

    Article  Google Scholar 

  11. Cui Y, Liu C, Hu S, Yu X. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol Energy Mater Sol C. 2011;95(4):1208–12.

    Article  CAS  Google Scholar 

  12. He L, Li J, Zhou C, Zhu H, Cao X, Tang B. Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods. Sol Energy. 2014;103:448–55.

    Article  CAS  Google Scholar 

  13. Ji P, Sun H, Zhong Y, Feng W. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes. Chem Eng Sci. 2012;81:140–5.

    Article  CAS  Google Scholar 

  14. Qian T, Li J, Ma H, Yang J. Adjustable thermal property of polyethylene glycol/diatomite shape-stabilized composite phase change material. Polym Compos. 2016;37(3):854–60.

    Article  CAS  Google Scholar 

  15. Li J, He L, Liu T, Cao X, Zhu H. Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage. Sol Energy Mater Sol C. 2013;118(11):48–53.

    Article  CAS  Google Scholar 

  16. Karaman S, Karaipekli A, Sarı A, Biçer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol C. 2011;95(7):1647–53.

    Article  CAS  Google Scholar 

  17. Feng L, Zheng J, Yang H, Guo Y, Li W, Li X. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energy Mater Sol C. 2011;95(2):644–50.

    Article  CAS  Google Scholar 

  18. Wang W, Yang X, Fang Y, Ding J. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid–liquid phase change materials. Appl Energy. 2009;86(2):170–4.

    Article  CAS  Google Scholar 

  19. Xie X, Mai Y, Zhou X. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep. 2005;49(4):89–112.

    Article  Google Scholar 

  20. Tang Y, Alva G, Huang X, Su D, Liu L, Fang G. Thermal properties and morphologies of MA–SA eutectics/CNTs as composite PCMs in thermal energy storage. Energy Build. 2016;127:603–10.

    Article  Google Scholar 

  21. Li M, Chen M, Wu Z, Liu J. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. Energy Convers Manag. 2014;83(7):325–9.

    Article  CAS  Google Scholar 

  22. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forró L. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett. 1999;82(5):944–7.

    Article  CAS  Google Scholar 

  23. Li H, Jiang M, Li Q, Li D, Chen Z, Hu W, Huang J, Xu X, Dong L, Xie H, Xiong C. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance. Energy Convers Manag. 2013;75:482–7.

    Article  CAS  Google Scholar 

  24. Meng X, Zhang H, Sun L, Xu F, Jiao Q, Zhao Z, Zhang J, Zhou H, Sawada Y, Liu Y. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials. J Therm Anal Calorim. 2012;111(1):377–84.

    Article  Google Scholar 

  25. Cavallaro G, De Lisi R, Lazzara G, Milioto S. Polyethylene glycol/clay nanotubes composites thermal properties and structure. J Therm Anal Calorim. 2013;112:383–9.

    Article  CAS  Google Scholar 

  26. Wang J, Xie H, Xin Z, Li Y, Chen L. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy. 2010;84(2):339–44.

    Article  CAS  Google Scholar 

  27. Cavallaro G, Lazzara G, Milioto S. Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab. 2013;98:2529–36.

    Article  CAS  Google Scholar 

  28. Zheng M, Liu Y, Xiao Y, Zhu Y, Guan Q, Yuan D, Zhang J. An easy catalyst-free hydrothermal method to prepare monodisperse carbon microspheres on a large scale. J Phys Chem C. 2009;113(19):8455–9.

    Article  CAS  Google Scholar 

  29. Wang Q, Li H, Chen L, Huang X. Monodispersed hard carbon spherules with uniform nanopores. Carbon. 2001;39(14):2211–4.

    Article  CAS  Google Scholar 

  30. Mi Y, Hu W, Dan Y, Liu Y. Synthesis of carbon micro-spheres by a glucose hydrothermal method. Mater Lett. 2008;62(8):1194–6.

    Article  CAS  Google Scholar 

  31. Mehrali M, Latibari ST, Mehrali M, Mahlia TMI. Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage. Energy Convers Manag. 2014;88:206–13.

    Article  CAS  Google Scholar 

  32. Ryu J, Suh Y-W, Suh DJ, Ahn DJ. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon. 2010;48(7):1990–8.

    Article  CAS  Google Scholar 

  33. Wang C, Feng L, Li W, Zheng J, Tian W, Li X. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Sol Energy Mater Sol C. 2012;105:21–6.

    Article  CAS  Google Scholar 

  34. Wang J, Yang M, Lu Y, Jin Z, Tan L, Gao H, Fan S, Dong W, Wang G. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy. 2016;19:78–87.

    Article  CAS  Google Scholar 

  35. Tang B, Qiu M, Zhang S. Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Sol Energy Mater Sol C. 2012;105:242–8.

    Article  CAS  Google Scholar 

  36. Feng L, Song P, Yan S, Wang H, Wang J. The shape-stabilized phase change materials composed of polyethylene glycol and graphitic carbon nitride matrices. Thermochim Acta. 2015;612:19–24.

    Article  CAS  Google Scholar 

  37. Qian T, Li J, Ma H, Yang J. The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol–gel method. Sol Energy Mater Sol C. 2015;132:29–39.

    Article  CAS  Google Scholar 

  38. Chen W, Yan L, Bangal R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon. 2010;48:1146–52.

    Article  CAS  Google Scholar 

  39. Han D, Yan L, Chen W, Li W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym. 2011;83:653–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Program of Natural Science Foundation of China (No. 51378426) and the Youth Science and Technology Innovation Team of Sichuan Province of Building Environment and Energy Efficiency (No. 2015TD0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Yuan, Y., Zhang, H. et al. Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material. J Therm Anal Calorim 130, 1741–1749 (2017). https://doi.org/10.1007/s10973-017-6535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6535-6

Keywords

Navigation