Skip to main content
Log in

Properties and performance of metakaolin pozzolanic cement pastes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cement industry produces the 7% of the global CO2 emission. The most effective way to decrease CO2 emission of cement industry is the substitution of a proportion of cement with supplementary cementing materials. Metakaolin (MK) is a silica-based product that, on reaction with Ca(OH)2 (CH), produces C–S–H gel at ambient temperature. MK also contains alumina that reacts with CH to produce additional alumina-containing phases, including C4AH13, C2ASH8 and C3AH6. The aim of our research is to investigate the effect of MK up to 20 mass% substitutions of OPC on the hydration characteristics of MK-blended cement pastes. The physico-chemical properties of the hardened cement pastes were studied up to 90 days of hydration. The hydration products of some selected samples were investigated using XRD, DTA and TG techniques. The results indicated that substitution of up to 20 mass% OPC by MK as a pozzolanic materials resulted in an increase in the standard water of consistency, acceleration of the initial setting times, high compressive strength values at earlier ages and improvement of the mechanical, durability properties as well as performance of MK pozzolanic cement pastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Siddique R, Kahn MI. Supplementary cementing material. Berlin: Springer; 2011.

    Book  Google Scholar 

  2. He C, Osbaeck B, Makovicky E. Pozzolanic reactions of six principal clay minerals; activation, reactivity assessments and technological effects. Cem Concr Res. 1995;25(8):1691–702.

    Article  CAS  Google Scholar 

  3. Murat M, Comel C. Hydration reaction and hardening of calcined clays and related minerals III, influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite. Cem Concr Res. 1983;13(5):631–7.

    Article  Google Scholar 

  4. Minárik L, Kopecskó K. Impact of metakaolin—a new supplementary material—on the hydration mechanism of cement. Acta Tech Napoc Civ Eng Archit. 2013;56(2):100–10.

    Google Scholar 

  5. Frías M, Sánchez de Rojas MI, Cabrera J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem Concr Res. 2000;30(2):209–16.

    Article  Google Scholar 

  6. Li Z, Ding Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res. 2003;33(4):579–84.

    Article  CAS  Google Scholar 

  7. Love CA, Richardson IG, Brough AR. Composition and structure of C-S-H in white Portland cement-20% metakaolin pastes hydrated at 25 C. Cem Concr Res. 2007;37(2):109–17.

    Article  CAS  Google Scholar 

  8. Fernandez R, Martirena F, Scrivener KI. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res. 2011;41(1):113–22.

    Article  CAS  Google Scholar 

  9. Wild S, Khatib JM, Jones A. Relative strength, pozzolanic activity and cement hydration in superplasticized metakaolin concrete. Cem Concr Res. 1996;26(10):1537–44.

    Article  CAS  Google Scholar 

  10. Coleman NJ, McWhinnie WR. The solid state chemistry of metakaolin-blended ordinary Portland cement. J Mater Sci. 2000;35(11):2701–10.

    Article  CAS  Google Scholar 

  11. Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci. 2009;43:392–400.

    Article  CAS  Google Scholar 

  12. Changling H, Osbaeck B, Makovicky E. Pozzolanic reaction of six principal clay minerals: activation reactivity assessments and technological effects. Cem Concr Res. 1995;25(8):1691–702.

    Article  Google Scholar 

  13. Zhang MH, Malhotra VM. Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cem Concr Res. 1995;25(8):1713–25.

    Article  CAS  Google Scholar 

  14. Kinuthia JM, Wild S, Bb Sabir, Bai J. Self-compensating autogenous shrinkage in Portland cement-metakaolin-fly ash pastes. Adv Cem Res. 2000;12(1):35–43.

    Article  CAS  Google Scholar 

  15. Kannan V, Ganesan K. Mechanical and transport properties in ternary blended self compacting concrete with metakaolin and fly ash. J Mech Civil Eng. 2012;2(4):22–31.

    Article  Google Scholar 

  16. Li Z, Advanced concrete technology. Wiley, Hoboken; 2011, 14, 34, ISBN: 978-0-470-43743-8.

  17. Dinakar P, Sahoo PK, Sriram G. Effect of metakaolin content on the properties of high strength concrete. Int J Concr Struct Mater. 2013;7(3):215–23.

    Article  CAS  Google Scholar 

  18. ASTM Designation: C191, Standard Test method for normal consistency and setting of hydraulic cement. ASTM annual Book of ASTM Standards, 04, 01, 2008.

  19. El-Didamony H, Amer AA, Abdel-Aziz H. Properties and durability of alkali-activated slag pastes immersed in sea water. Ceram Int. 2012;38:3773–80.

    Article  CAS  Google Scholar 

  20. El-DidamonyH Sharara AM, Helmy IM, Abdel-Aleem S. Hydration characteristics of β-C2S in the presence of some accelerators. Cem Concr Res. 1996;26(8):1179–87.

    Article  Google Scholar 

  21. Egyptian Specification, The standard methods for the chemical analysis, 2010.

  22. ASTM Designation: C150, Standard test methods for compressive strength of hydraulic cements, 2007. p. 710–73.

  23. El-Didamony H, Amer AA, El-Hoseny S. Recycling of low grade aluminosilicate refractory bricks waste product in blended cement. J Therm Anal Calorim. 2016;125:23–33.

  24. El-Didamony H, Heikal M, Shoaib M. Homra pozzolanic cement. Silicates industrials. Ceram Sci Technol. 2000;65(3–4):39–43.

    CAS  Google Scholar 

  25. Brooks JJ, Johari MA, Mazloom M. Effect of admixtures on setting times of high-strength concrete. Cem Concr Compos. 2000;22:293–301.

    Article  CAS  Google Scholar 

  26. Badogiannis E, Kakali G, Dimopoulou G, Chaniotakis E, Tsivilis S. Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem Concr Compos. 2005;27(2):197–203.

    Article  CAS  Google Scholar 

  27. Rojas MF, Sanchez de Rojas MI. Chemical assessment of the electric arc furnace slag as construction material: expansive compounds. Cem Concr Res. 2004;34(10):1881–8.

    Article  Google Scholar 

  28. Brunauer S, Kantro DL. The hydration of tricalcium silicate and β-dicalcium silicate from 5°C to 50°C. In: Taylor HFW, editor. The chemistry of cements, vol. 1. London: Academic Press; 1964.

    Google Scholar 

  29. Trezza MA. Hydration study of ordinary Portland cement in the presence of zinc ions. Mater Res. 2007;10(4):331–4.

    Article  CAS  Google Scholar 

  30. Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42(12):1579–89.

    Article  CAS  Google Scholar 

  31. Ramachandran VS, Beaudoin JJ. Handbook of analytical techniques in concrete science and technology, principles, techniques and application. New York: William Andrew Publishing; 2001.

    Google Scholar 

  32. Plummer LN, Mackenzie FT. Predicting mineral solubility from rate data: application to the dissolution of magnesian calcites. Am J Sci. 1974;27(4):61–83.

    Article  Google Scholar 

  33. Esteves LP. On the hydration of water-entrained cement-silica system combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta. 2011;518:27–35.

    Article  CAS  Google Scholar 

  34. Vedalakshmi R. Quantification of hydrated cement products of blended cements in low and medium strength using TG and DTA technique. Thermochim Acta. 2003;407:49–60.

    Article  CAS  Google Scholar 

  35. Khan MI, Lynsdale CJ, Waldron P. Porosity and strength PFA/SF/OPC ternary blended pastes. Cem Concr Res. 2000;30(8):1225–9.

    Article  CAS  Google Scholar 

  36. Frías M, Cabrera J. Pore size distribution and degree of hydration of MK-cement pastes. Cem Concr Res. 2000;30:561–9.

    Article  Google Scholar 

  37. Mehta PK, Aitcin PC. Principles underlying production of high-performance concrete. Cem Concr Aggr. 1990;12(2):70–8.

    Article  CAS  Google Scholar 

  38. Hewlett PC. Lea’s chemistry of cement and concrete. Butterworth-Heinmann: Elsevier; 2004.

    Google Scholar 

  39. Echart A, Ludwig HM, Stark J. Hydration of the four main Portland cement clinker phases. Zem-Kalk-Gip. 1995;28(8):443–52.

    Google Scholar 

  40. El-Didamony H, Abo-EL-Enein S, Ali AH, EL-Sokkary TM. Effect of silica fume on the slag cement containing wet cement dust. Ind J Eng Mater Sci. 1999;6:274–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Amer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, A.A., El-Hoseny, S. Properties and performance of metakaolin pozzolanic cement pastes. J Therm Anal Calorim 129, 33–44 (2017). https://doi.org/10.1007/s10973-017-6087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6087-9

Keywords

Navigation