Skip to main content
Log in

Calorimetric and PXRD studies of ionic clathrate hydrates of tetrabutylammonium carboxylates in binary (C4H9)4NCnH2n+1CO2–H2O (n = 0–3) systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystal structure of the ionic clathrate hydrates of peralkylonium salts consists of hydrogen-bonded water molecules and anions forming host cage-like water-anion lattice, while peralkylonium cations are included into the cages of the lattice as guests. The ionic clathrate hydrates of some peralkylonium salts are considered as potentially applicable in various fields including gas separation, gas storage and transportation, cold storage and transportation. In this work, we report a synthesis and experimental measurements of compositions, melting points, enthalpies of fusion, as well as the results of the PXRD studies of eight ionic clathrate hydrates of tetrabutylammonium carboxylates formed in (C4H9)4NCnH2n+1CO2–H2O (n = 0–3) binary systems. The enthalpies of fusion values of these hydrates are measured for the first time. Three structural types were observed in the studied systems: on the base of tetragonal structure-I, cubic structure-I, and hexagonal structure-I. The data on thermal properties of studied ionic clathrate hydrates indicate that they are promising as phase change materials for cold storage and air-conditioning systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeffrey GA. Hydrate inclusion compounds. In: Atwood JL, Davies JE, MacNicol DD, Vogtle F, editors. Comprehensive supramolecular chemistry. Oxford: Pergamon; 1996, v.6, ch. 23, p. 757–88.

  2. Rodionova TV, Komarov VYu, Villevald GV, Karpova TD, Kuratieva NV, Manakov AYu. Calorimetric and structural studies of tetrabutylammonium bromide ionic clathrate hydrates. J Phys Chem B. 2013;117:10677–85.

    Article  CAS  Google Scholar 

  3. Rodionova T, Komarov V, Villevald G, Aladko L, Karpova T, Manakov A. Calorimetric and structural studies of tetrabutylammonium chloride ionic clathrate hydrates. J Phys Chem B. 2010;114:11838–46.

    Article  CAS  Google Scholar 

  4. Bonamico M, Jeffrey GA, McMullan RK. Polyhedral clathrate hydrates. III. Structure of the tetra n-butyl ammonium benzoate hydrate. J Chem Phys. 1962;37:2219–31.

    Article  CAS  Google Scholar 

  5. Suwinska K, Lipkowski JS, Dyadin YuA, Komarov VYu, Terekhova IS, Rodionova TV, Manakov AYu. Clathrate formation in the water–tetraisoamylammonium propionate system: X-ray structural analysis of the clathrate hydrate (i-C5H11)4NC2H5CO2·36H2O. J Incl Phenom Macrocycl Chem. 2006;56:331–5.

  6. Rodionova T, Komarov V, Lipkowski J, Kuratieva N. The structure of the ionic clathrate hydrate of tetrabutylammonium valerate (C4H9)4NC4H9CO2·39.8H2O. New J Chem. 2010;34:432–8.

    Article  CAS  Google Scholar 

  7. Komarov VYu, Rodionova TV, Suwinska K. Single crystal X-ray diffraction study of the cubic ionic clathrate hydrate of tetrabutylammonium propionate C4H9)4NC2H5COO·27.0H2O. J Struct Chem. 2012;53:768–75.

    Article  CAS  Google Scholar 

  8. Dyadin YuA, Udachin KA. Clathrate polyhydrates of peralkylonium salts and their analogs. J Struct Chem. 1987;28:394–432.

    Article  Google Scholar 

  9. Shimada W, Ebinuma T, Oyama H, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H. Separation of gas molecule using tetra-n-butylammonium bromide semi-clathrate hydrate crystals. Jpn J Appl Phys. 2003;42:L129–31.

    Article  CAS  Google Scholar 

  10. Kamata Y, Oyama H, Shimada W, Ebinuma T, Takeya S, Uchida T, Nagao J, Narita H. Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate. Jpn J Appl Phys. 2004;43:362–5.

    Article  CAS  Google Scholar 

  11. Duc NH, Chauvy F, Herri J-M. CO2 capture by hydrate crystallization—a potential solution for gas emission of steelmaking industry. Energy Conver Manag. 2007;48:1313–22.

    Article  CAS  Google Scholar 

  12. Kamata Y, Yamakoshi Y, Ebinuma T, Oyama H, Shimada W, Narita H. Hydrogen sulfide separation using tetra-n-butyl ammonium bromide semiclathrate (TBAB) hydrate. Energy Fuels. 2005;19:1717–22.

    Article  CAS  Google Scholar 

  13. Ahmadloo F, Mali G, Chapoy A, Tohidi B. Gas separation and storage using semi-clathrate hydrates. In: Proceedings of 6th international conference on gas hydrates (Vancouver, British Columbia, Canada, July 6–10). 2008.

  14. Li S, Fan S, Wang J, Lang X, Lang X, Liang D. CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide. J Nat Gas Chem. 2009;18:15–20.

    Article  Google Scholar 

  15. Fan S, Li S, Wang J, Lang X, Wang Y. Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy Fuels. 2009;23:4202–8.

    Article  CAS  Google Scholar 

  16. Li X-S, Xia Z-M, Chen Z-Y, Yan K-F, Li G, Wu H-J. Gas hydrate formation process for capture of carbon dioxide from fuel gas mixture. Ind Eng Chem Res. 2010;49:11614–9.

    Article  CAS  Google Scholar 

  17. Bouchafaa W, Dalmazzon D. Thermodynamic equilibrium data for mixed hydrates of CO2–N2, CO2–CH4 and CO2–H2 in pure water and TBAB solutions. In: Proceedings of 7th international conference on gas hydrates (Edinburgh, Scotland, United Kingdom, July 17–21). 2011.

  18. Kim SM, Lee JD, Lee HJ, Lee EK, Kim Y. Gas hydrate formation method to capture the carbon dioxide for pre-combustion process in IGCC plant. Int J Hydrog Energy. 2011;36:1115–21.

    Article  CAS  Google Scholar 

  19. Li X-S, Xu C-G, Chen Z-Y, Cai J. Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns. Int J Hydrog Energy. 2012;37:720–7.

    Article  CAS  Google Scholar 

  20. Eslamimanesh A, Mohammadi AH, Richon D, Naidoo P, Ramjugernath D. Application of gas hydrate formation in separation processes: a review of experimental studies. J Chem Thermodyn. 2012;46:62–71.

    Article  CAS  Google Scholar 

  21. Xu C-G, Zhang S-H, Cai J, Chen Z-Y, Li X-S. CO2 (carbon dioxide) separation from CO2–H2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis. Energy. 2013;59:719–25.

    Article  CAS  Google Scholar 

  22. Park S, Lee S, Lee Y, Seo Y. CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts. Environ Sci Technol. 2013;47:7571–7.

    Article  CAS  Google Scholar 

  23. Komatsu H, Ota M, Sato Y, Watanabe M, Smith RL. Hydrogen and carbon dioxide adsorption with tetra-n-butyl ammonium semi-clathrate hydrates for gas separations. AIChE J. 2015;61(3):992–1003.

    Article  CAS  Google Scholar 

  24. Kim S, Kang S-P, Seo Y. Semiclathrate-based CO2 capture from flue gas in the presence of tetra-n-butyl ammonium chloride (TBAC). Chem Eng J. 2015;276:205–12.

    Article  CAS  Google Scholar 

  25. Iino K, Sakakibara Y, Suginaka T, Ohmura R. Phase equilibria for the ionic semiclathrate hydrate formed with tetrabutylphosphonium chloride plus CO2, CH4, or N2. J Chem Thermodyn. 2014;71:133–6.

    Article  CAS  Google Scholar 

  26. Suginaka T, Sakamoto H, Iino K, Sakakibara Y, Ohmura R. Phase equilibrium for ionic semiclathrate hydrate formed with CO2, CH4, or N2 plus tetrabutylphosphonium bromide. Fluid Phase Equilib. 2013;344:108–11.

    Article  CAS  Google Scholar 

  27. Sun Z-G, Jiao L-J, Zhao Z-G, Wang G-L, Huang H-F. Phase equilibria conditions of semi-clathrate hydrates of (tetra-n-butyl ammonium chloride + carbon dioxide). J Chem Thermodyn. 2014;75:116–8.

    Article  CAS  Google Scholar 

  28. Mayoufi N, Dalmazzone D, Fűrst W, Dalahaye A, Fournaison L. CO2 enclathration in hydrates of peralkyl-(ammonium/phosphonium) salts: stability conditions and dissociation enthalpies. J Chem Eng Data. 2010;55:1271–5.

    Article  CAS  Google Scholar 

  29. Kim S, Baek I-H, You J-K, Seo Y. Guest gas enclathration in tetra-n-butyl ammonium chloride (TBAC) semiclathrates: potential application to natural gas storage and CO2 capture. Appl Energy. 2015;140:107–12.

    Article  CAS  Google Scholar 

  30. Du J-W, Liang D-Q, Li D-L, Chen Y-F, Li X-J. Phase equilibrium conditions of tetrabutyl ammonium nitrate + CO2, N2, or CH4 semiclathrate hydrate systems. Ind Eng Chem Res. 2011;50(20):11720–3.

    Article  CAS  Google Scholar 

  31. Shi L-L, Liang D-Q, Li D-L. Phase equilibrium data of tetrabutylphosphonium bromide plus carbon dioxide or nitrogen semiclathrate hydrates. J Chem Eng Data. 2013;58(7):2125–30.

    Article  CAS  Google Scholar 

  32. Arjmandi M, Chapoy A, Tohidi B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutylammonium bromide. J Chem Eng Data. 2007;52:2153–8.

    Article  CAS  Google Scholar 

  33. Deschamps J, Dalmazzone D. Dissociation enthalpies and phase equilibrium for TBAB semi-clathrate hydrates of N2, CO2, N2 + CO2, CH4 + CO2. J Therm Anal Calorim. 2009;98:113–8.

    Article  CAS  Google Scholar 

  34. Lee S, Park S, Lee Y, Lee J, Lee H, Seo Y. Guest gas enclathration in semi-clathrates of tetra-n-butyl ammonium bromide: stability condition and spectroscopic analysis. Langmuir. 2011;27:10598–603.

    Google Scholar 

  35. Darbouret M, Cournil M, Herri J-M. Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants. Int J Refrig Rev Int Froid. 2005;28(5):663–71.

    Article  CAS  Google Scholar 

  36. Song W, Xiao R, Huang C, He S, Dong K, Feng Z. Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube: forced convective heat transfer behaviors. Int J Refrig. 2009;32:1801–7.

    Article  CAS  Google Scholar 

  37. Ma ZW, Zhang P, Wang RZ, Furui S, Xi GN. Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes. Int J Heat Mass Transf. 2010;53:3745–57.

    Article  CAS  Google Scholar 

  38. Li G, Liu D, Xie Y. Study on thermal properties of TBAB-THF hydrate mixture for cold storage by DSC. J Therm Anal Calorim. 2010;102:819–26.

    Article  CAS  Google Scholar 

  39. Ma ZW, Zhang P. Pressure drop and heat transfer characteristics of clathrate hydrate slurry in a plate heat exchanger. Int J Refrig. 2011;34:796–806.

    Article  Google Scholar 

  40. Shi XJ, Zhang P. Crystallization of tetra-n-butyl ammonium bromide clathrate hydrate slurry and related heat transfer characteristics. Energy Convers Manag. 2014;77:89–97.

    Article  CAS  Google Scholar 

  41. Sakamoto H, Sato K, Shiraiwa K, Takeya S, Nakajimac M, Ohmura R. Synthesis, characterization and thermal-property measurements of ionic semiclathrate hydrates formed with tetrabutylphosphonium chloride and tetrabutylammonium acrylate. RSC Adv. 2011;1:315–22.

    Article  CAS  Google Scholar 

  42. Clain P, Ndoye FT, Delahaye A, Fournaison L, Lin W, Dalmazzone D. Particle size distribution of TBPB hydrates by focused beam reflectance measurement (FBRM) for secondary refrigeration application. Int J Refrig. 2015;50:19–31.

    Article  CAS  Google Scholar 

  43. Zhang P, Ma ZW, Wang RZ. An overview of phase change material slurries: MPCS and CHS. Renew Sustain Energy Rev. 2010;14:598–614.

    Article  CAS  Google Scholar 

  44. Zhang P, Ma ZW. An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems. Renew Sustain Energy Rev. 2012;16:5021–58.

    Article  CAS  Google Scholar 

  45. Youssef Z, Delahaye A, Huang L, Trinquet F, Fournaison L, Pollerberg C, Doetsch C. State of the art on phase change material slurries. Energy Convers Manag. 2013;65:120–32.

    Article  CAS  Google Scholar 

  46. Ogoshi H, Takao S. Air conditioning system using clathrate hydrate slurry. JFE Tech Rep. 2004;3:1–5.

    CAS  Google Scholar 

  47. Ogoshi H, Matsuyama E, Miyamoto H, Mizukami T, Furumoto N, Sugiyama M. Clathrate hydrate slurry, CHS thermal energy storage system and its applications. In: Proceedings of 2010 international symposium on next-generation air conditioning and refrigeration technology. 2010. 17–19 Feb, p. 1–8. Tokyo, Japan.

  48. Dyadin YuA, Gaponenko LA, Aladko LS, Bogatyryova SV. Clathrate hydrates of tetrabutylammonium carboxylates and dicarboxylates. J Incl Phenom. 1984;2:259–66.

    Article  CAS  Google Scholar 

  49. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B. 1993;192:55.

    Article  CAS  Google Scholar 

  50. Roisnel T, Rodriguez-Carvajal J. WinPLOTR: a windows tool for powder diffraction patterns analysis. In: Delhez R, Mittenmeijer EJ, editors. Materials science forum, proceedings of the seventh European powder diffraction conference (EPDIC 7), 2000, p. 118–23.

  51. Nakayama H, Torigata S. Hydrates of organic compounds. VIII. The effect of carboxylate anions on the formation of clathrate hydrates of tetrabutylammonium carboxylates. Bull Chem Soc Jpn. 1984;57:171–4.

    Article  CAS  Google Scholar 

  52. Beurskens G, Jeffrey GA, McMullan RK. Polyhedral clathrate hydrates. VI. Lattice type and ion distribution in some new peralkyl ammonium, phosphonium, and sulfonium salt hydrates. J Chem Phys. 1963;39:3311–5.

    Article  Google Scholar 

  53. McMullan RK, Bonamico M, Jeffrey GA. Polyhedral clathrate hydrates. V. Structure of the tetra-n-butyl ammonium fluoride hydrate. J Chem Phys. 1963;39:3295–310.

    Article  CAS  Google Scholar 

  54. Komarov VYu, Rodionova TV, Terekhova IS, Kuratieva NV. The cubic superstructure-I of tetrabutylammonium fluoride (C4H9)4NF·29.7H2O clathrate hydrate. J Incl Phenom Macrocycl Chem. 2007;59:11–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Basic Research Programs of the RAS (Program No. V.44.4.9.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana V. Rodionova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionova, T.V., Terekhova, I.S., Villevald, G.V. et al. Calorimetric and PXRD studies of ionic clathrate hydrates of tetrabutylammonium carboxylates in binary (C4H9)4NCnH2n+1CO2–H2O (n = 0–3) systems. J Therm Anal Calorim 128, 1165–1174 (2017). https://doi.org/10.1007/s10973-016-6023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6023-4

Keywords

Navigation