Skip to main content
Log in

Investigation of sintering behavior of ZrO2 (Y) ceramic green body by means of non-isothermal dilatometry and thermokinetic analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Using the method of dilatometry, kinetic characteristics of compacts shrinkage manufactured from ultrafine plasmochemical ZrO2 (Y) powders and commercial Tosoh’s powders are investigated. The shrinkage curves are constructed with a DIL 402 C high-sensitivity dilatometer in a non-isothermal heating mode at different heating rates (1, 2, 5 and 10 °C min−1). It is shown that the plasmochemical powders are characterized by a lower sintering efficiency than the Tosoh’s powders. The kinetic results are processed using a Netzsch Thermokinetics license software program developed for those who make use of devices manufactured by the Netzsch-Geratebau GmbH. The kinetic characteristics of compact shrinkage are determined as a function of partial length variation using Friedman’s analysis. Considerable differences are found between the values of apparent shrinkage activation energy for plasmochemical and Tosoh’s powders in the initial and final shrinkage stages. We attribute the mentioned differences in phase composition of the powders and their degree of agglomeration. In the intermediate shrinkage stage, the values of the apparent activation energy obtained for both types of powders have only marginal differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gusev AI. Nanomaterials, nanostructures, nanotechnology. Moscow: Fizmatlit; 2007 (in Russian).

    Google Scholar 

  2. Lange FF. Transformation toughening. Part 3: experimental observation in the ZrO2–Y2O3 system. Mater Sci. 1982;17(1):240–6.

    Article  CAS  Google Scholar 

  3. Bowen P, Carry C. From powder to sintered pieces: formation, transformation and sintering of nanostructured ceramic oxides. Powder Technol. 2002;128:248–55.

    Article  CAS  Google Scholar 

  4. Chevalier J, Gremillard L, Virkar AV, Clarke DL. The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc. 2009;92(9):1901–20.

    Article  CAS  Google Scholar 

  5. Subaro ES. Science and technology of zirconia: advanced in ceramics. Kansas: ACERS Publisher; 1981.

    Google Scholar 

  6. Cottom BA, Mayo MJ. Fracture toughness of nanocrystalline ZrO2-3 mol% Y2O3 determined by Vickers indentation. Scr Mater. 1996;34:809–14.

    Article  CAS  Google Scholar 

  7. Dychton K, Drajewicz M, Pytel M, Rokicki P, Nowotnik A. Yttria-stabilized zirconia–alumina composite sintering temperature effect on thermal diffusivity. J Therm Anal Calorim. 2016;126:1–7.

    Article  CAS  Google Scholar 

  8. Ryczkowski R, Niewiadomski M, Michalkiewicz B, Skiba E, Ruppert AM, Grams J. Effect of alkali and alkaline earth metals addition on Ni/ZrO2 catalyst activity in cellulose conversion. J Therm Anal Calorim. 2016;126:103–10.

    Article  CAS  Google Scholar 

  9. Ruppert AM, Niewiadomski M, Grams J, Kwapiński W. Optimization of Ni/ZrO2 catalytic performance in thermochemical cellulose conversion for enhanced hydrogen production. Appl Catal B Environ. 2014;145:5–90.

    Article  Google Scholar 

  10. Caproni E, Carvalho FMS, Muccillo R. Development of zirconia–magnesia/zirconia–yttria composite solid electrolytes. Solid State Ion. 2008;179(27–23):1652–4.

    Article  CAS  Google Scholar 

  11. Wakai F, Sakaguchi S, Matsuno Y. Superplasticity of Yttria—stabilized tetragonal ZrO2 polycrystalls. Adv Ceram Mater. 1986;1:259–63.

    Article  CAS  Google Scholar 

  12. Opfermann J, Blumm J, Emmerich W-D. Simulation of sintering behavior of ceramic green body using advanced thermokinetic analysis. Thermochim Acta. 1998;318:213–20.

    Article  CAS  Google Scholar 

  13. Blumm J, Opfermann J. Simulation of the sintering behavior of high-tech ceramics by means of dilatometry and thermokinetic analysis. High Temp High Press. 2000;32:567–72.

    Article  CAS  Google Scholar 

  14. Larin VK, Kondakov VM, Malui EN, Matykha VA, Dedov NV, et al. A Plasmochemical process for production of ultrafine (nano) powders of metal oxides and their promising applications. Izv Vyschikh Uchebn Zaved Tsvetn Metall. 2003;5:59–64 (in Russian).

    Google Scholar 

  15. Surzhikov AP, Ghyngazov SA, Frangulyan TS. A dilatometric study of the effect of pressing on the kinetics of compression of ultrafine zirconium doxide powders under thermal annealing. Rus Phys J. 2012;55(4):345–52.

    Article  CAS  Google Scholar 

  16. Theunissen GSA, Winnubst AJA, Burggraaf AJ. Surface and grain boundary analysis of doped zirconia ceramics by AES and XPS. J Mater Sci. 1992;27:5057–66.

    Article  CAS  Google Scholar 

  17. Surzhikov AP, Ghyngazov SA, Frangulyan TS, Vasil’ev IP. Thermal transformations in ultrafine plasmochemical zirconium dioxide powders. J Therm Anal Calorim. 2015;119:1603–9.

    Article  CAS  Google Scholar 

  18. Shi JL, Gao JH, Lin ZH, Yan DS. Effect of agglomerates in ZrO2 powder compacts on microstructural development. J Mater Sci. 1993;28:342–8.

    Article  CAS  Google Scholar 

  19. Luo J, Adak S, Steven R. Microstructure evolution and grain growth in the sintering of 3Y-TZP ceramics. J Mater Sci. 1998;33:5301–9.

    Article  CAS  Google Scholar 

  20. Friedman HL. J Polym Sci (1965); C6:175.

  21. Batista RM, Muccillo ENS. Dilatometry analysis of the sintering process of nanostructured gadolinia-doped ceria. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5674-5.

    Google Scholar 

  22. Rankin J, Sheldon BW. In suti TEM sintering of nano-sized ZrO2 particles. Mater Sci Eng A. 1995;204:48–53.

    Article  Google Scholar 

  23. Wakai F, Nagono T. The role of interface-controlled diffusion creep on superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals. J Mater Sci Lett. 1988;7:607–9.

    Article  CAS  Google Scholar 

  24. Panda PC, Wang J, Raj R. Sinter-forging characteristics of fine-grained zirconia. J Am Ceram Soc. 1988;71:507–9.

    Article  Google Scholar 

  25. Ashby MF, Verrall RA. Diffusion-accommodated flow and superplasticity. Acta Metal. 1973;21:149–63.

    Article  CAS  Google Scholar 

  26. Nieh TG, McNally CN, Wadsworth J. Superplastic properties of a fine-grained yttria-stabilized tetragonal polycrystal of zirconia. Scr Metall. 1988;22:1297–300.

    Article  CAS  Google Scholar 

  27. Shojai F, Mantyla TA. Effect of Sintering temperature and holding time on the properties of 3 Y-ZrO2 microfiltration members. J Mater Sci. 2001;36:1–10.

    Article  Google Scholar 

  28. Maca K, Trunec M, Doback P. Bulk zirconia nanoceramics prepared by cold isostatic pressing and pressureless sintering. Rev Adv Mater Sci. 2005;10:84–8.

    CAS  Google Scholar 

  29. Mazaheri M, Simchi A, Dourandish M, Golestani-Fard F. Master sintering curves of a nanoscale 3Y-TZP powder compacts. Ceram Int. 2009;35(2):547–54.

    Article  CAS  Google Scholar 

  30. Teng M-H, Lai Y-C, Chen Y-T. A computer program of master sintering curve model to accurately predict sintering results. West Pac Earth Sci. 2002;2:171–80.

    Google Scholar 

Download references

Acknowledgements

This work was supported by The Ministry of Education and Science of the Russian Federation in part of the “Science” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ghyngazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surzhikov, A.P., Ghyngazov, S.A., Frangulyan, T.S. et al. Investigation of sintering behavior of ZrO2 (Y) ceramic green body by means of non-isothermal dilatometry and thermokinetic analysis. J Therm Anal Calorim 128, 787–794 (2017). https://doi.org/10.1007/s10973-016-5966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5966-9

Keywords

Navigation