Skip to main content
Log in

Isothermal crystallization behaviors and kinetics of nucleated polylactide/poly(butylene adipate-co-terephthalate) blend films with talc

Influence of compatibilizer contents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polylactide (PLA) and its blend films with and without a compatibilizer in the presence of poly(butylene adipate-co-terephthalate) (PBAT) and talc were prepared through a twin-screw extruder. The effects of PBAT, talc, and various contents of compatibilizer on thermal and morphological properties as well as crystallization of these blends were investigated. PBAT and talc were used as a flexible polymer and a nucleating agent at 10 mass% and 1 phr, respectively, whereas methylenediphenyl diisocyanate was used as a compatibilizer at different amounts (1–7 mass% based on PBAT contents). Isothermal crystallization behaviors and kinetics of neat and nucleated PLA blends were evaluated by differential scanning calorimeter and polarized optical microscope. The Avrami and Arrhenius equations were used to investigate the crystallization kinetics. The results revealed that the presence of PBAT and talc in the films led to an increment of crystallization rate of PLA via a synergistic effect under isothermal crystallization conditions. However, the crystallization rate significantly decreased with increasing the crystallization temperature (T c). These results were in agreement with crystallization kinetic and morphological studies, suggesting that the crystallization behaviors, kinetics, and mechanisms of PLA were affected by these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Re GL, Benali S, Habibi Y, Raquez JM, Dubois P. Stereocomplexed PLA nanocomposites: from in situ polymerization to materials properties. Eur Polym J. 2014;54:138–50.

    Article  Google Scholar 

  2. Martin O, Averous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42:6209–19.

    Article  CAS  Google Scholar 

  3. Kelnar I, Kratochvil J, Kapralkova L. Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. J Therm Anal Calorim. 2016;124:799–805.

    Article  CAS  Google Scholar 

  4. Hwang JJ, Huang SM, Liu HJ, Chu HC, Lin LH, Chung CS. Crystallization kinetics of poly(l-lactic acid)/montmorillonite nanocomposites under isothermal crystallization condition. J Appl Polym Sci. 2012;124:2216–26.

    Article  CAS  Google Scholar 

  5. Wang Y, Chiao SM, Hung TF, Yang SY. Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: influence of compatibilizer type. J Appl Polym Sci. 2012;125:E402–12.

    Article  CAS  Google Scholar 

  6. Zhang N, Wang Q, Ren J, Wang L. Preparation and properties of biodegradable poly(lactic acid)/poly(butyrene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci. 2009;44:250–6.

    Article  CAS  Google Scholar 

  7. Arrieta MP, Lopez J, Hernandez A, Rayon E. Ternary PLA–PHB-limonene blends intended for biodegradable food packaging applications. Eur Polym J. 2014;50:255–70.

    Article  CAS  Google Scholar 

  8. Arrieta MP, Lopez J, Ferrandiz S, Peltzer MA. Characterization of PLA-limonene blends for food packaging applications. Polym Test. 2013;32:760–8.

    Article  CAS  Google Scholar 

  9. Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2015;19:635–42.

    Article  Google Scholar 

  10. Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of a polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120:1765–74.

    Article  CAS  Google Scholar 

  11. Xiao HW, Li P, Ren X, Jiang T, Taut YJ. Isothermal crystalliztion kinetics and crystal structure of poly(lactic acid): effect of triphenyl phosphate and talc. J Appl Polym Sci. 2010;118:3558–69.

    Article  CAS  Google Scholar 

  12. Liao HT, Wu CS. Preparation and characterization of ternary blends composed of polylactide, poly(ε-caprolactone) and starch. Mat Sci Eng A Struct. 2009;515:207–14.

    Article  Google Scholar 

  13. Zhang JF, Sun X. Mechanical and thermal properties of poly (lactic acid)/starch blends with dioctyl maleate. J Appl Polym Sci. 2004;94:1697–704.

    Article  CAS  Google Scholar 

  14. Shin BY, Jo GS, Kim BS, Hong KH, Cho BH. Properties of compatibilized PLA/starch blends. Appl Chem. 2006;10:77–88.

    Google Scholar 

  15. Jang WY, Shin BY, Lee TJ, Narayan R. Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem. 2007;13:457–64.

    CAS  Google Scholar 

  16. Carson D, Nie L, Narayan R, Dubois P. Maleation of polylactide (PLA) by reactive extrusion. J Appl Polym Sci. 1999;72:477–85.

    Article  Google Scholar 

  17. Plackett D. Maleated polylactide as an interfacial compatibilizer in biocomposites. J Polym Environ. 2004;12:131–8.

    Article  CAS  Google Scholar 

  18. Wang H, Sun X, Seib P. Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J Appl Polym Sci. 2001;82:1761–7.

    Article  CAS  Google Scholar 

  19. Wang H, Sun X, Seib P. Effect of starch moisture on properties of wheat starch and poly(lactic acid) blend containing methylenediphenyl diisocyanate. J Polym Environ. 2002;10:133–8.

    Article  CAS  Google Scholar 

  20. Phetwarotai W, Potiyaraj P, Aht-Ong D. Properties of compatibilized polylactide blend films with gelatinized corn and tapioca starches. J Appl Polym Sci. 2010;116:2305–11.

    CAS  Google Scholar 

  21. Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer. 2007;48:6855–66.

    Article  CAS  Google Scholar 

  22. Lee JH, Jeong YG. Preparation and crystallization behavior of polylactide nanocomposites reinforced with POSS-modified montmorillonite. Fibers Polym. 2010;12:180–9.

    Article  Google Scholar 

  23. Phetwarotai W, Aht-Ong D. Properties and nonisothermal crystallization behavior of nucleated polylactide biodegradable composite films. Adv Mater Res. 2012;488:671–5.

    Article  Google Scholar 

  24. Jiang XL, Luo SJ, Sun K, Chen XD. Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett. 2007;1:245–51.

    Article  CAS  Google Scholar 

  25. Phetwarotai W, Aht-Ong D. Reactive compatibilization of polylactide, thermoplastic starch and poly(butylene adipate-co-terephthalate) biodegradable ternary blend films. Mater Sci Forum. 2011;695:178–81.

    Article  CAS  Google Scholar 

  26. Gedde UFLW. Polymer physics. 1st ed. London: Chapman & Hall; 1995.

    Google Scholar 

  27. Xiao H, Lu W, Yeh JT. Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci. 2009;112:3754–63.

    Article  CAS  Google Scholar 

  28. Dell’Erba R, Groeninckx G, Maglio M, Malinconico M, Migliozzi A. Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL Blends. Polymer. 2001;42:7831–40.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support from Ratchadapiseksomphot Endowment Fund, Chulalongkorn University (Sci-Super 2014-030) and The 90th Anniversary of Chulalongkorn University Fund. Additionally, this research was partially supported by Ratchadapiseksomphot Endowment under Outstanding Research Performance Program (GF_58_08_23_01). W. Phetwarotai gratefully thanks the Development and Promotion of Science and technology Talents project (DPST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangdao Aht-Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phetwarotai, W., Aht-Ong, D. Isothermal crystallization behaviors and kinetics of nucleated polylactide/poly(butylene adipate-co-terephthalate) blend films with talc. J Therm Anal Calorim 126, 1797–1808 (2016). https://doi.org/10.1007/s10973-016-5669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5669-2

Keywords

Navigation