Skip to main content
Log in

An evaluation of the thermal degradation kinetics of novel melt processed PET–hemp fiber composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work reports the thermal degradation kinetics of five formulations of polyethylene terephthalate (PET) reinforced with 1, 5, 10, 15, and 20 % hemp fibers based on thermogravimetric investigations. Two consecutive degradation steps were observed between 573 and 773 K. Moreover, their kinetic triplets were determined by nonlinear curve fitting methods, with the Sestak–Berggren and the truncated Sestak–Berggren models, respectively. The resulting kinetic parameters varied with the fiber’s concentration in the following ranges: 1.8 ≤ A ≤ 5, 2.25 ≤ n ≤ 3.17, 7.05 ≤ m ≤ 12.74, and −2.21 ≤ p ≤ −1 for the first step; and 1.76 ≤ A ≤ 10, 1.37 ≤ n ≤ 2.49, and 0.77 ≤ m ≤ 2.35 for the second. This work further confirms the thermal stability of PET–hemp fiber composites and provides key information for the reaction mechanism, a crucial developmental step for bio-composite materials with high-melting thermoplastic matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Saheb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18:351–63.

    Article  CAS  Google Scholar 

  2. Caulfield DF, Jacobson RE, Sears KD, Underwood JH. Woodpulp fibres as reinforcements for high-melting engineering thermoplastics for “under-the-hood” automotive applications. In: 17th annual meeting polymer processing society. Montreal, Canada: The Polymer Processing Society; 2001. p. 10.

  3. Ho M, Wang H, Lee J, Ho C, Lau K, Leng J, et al. Critical factors on manufacturing processes of natural fibre composites. Compos Part B. 2012;8:3549–62.

    Article  Google Scholar 

  4. Ouajai S, Shanks RA. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab. 2005;89:327–35.

    Article  CAS  Google Scholar 

  5. White RH, Dietenberger MA. Wood products: thermal degradation and fire. Amsterdam: Elsevier; 2001. p. 9712–6.

    Google Scholar 

  6. Fotso Talla AS, Erchiqui F, Kaddami H, Kocaefe D. Investigation of the thermostability of poly(ethylene terephthalate)-hemp fiber composites: extending natural fiber reinforcement to high-melting thermoplastics. J Appl Polym Sci. 2015;132:42500 doi:10.1002/app.42500.

    Google Scholar 

  7. Fotso Talla AS, Erchiqui F, Kocaefe D, Kaddami H. Effect of hemp fiber on PET/hemp composites. J Renew Mater. 2014;2:285–90.

    Article  Google Scholar 

  8. Fotso Talla AS, Mfoumou E, Jeson S, Pagé D, Erchiqui F. Properties of a novel melt processed PET-Hemp composite: influence of additives and fibers concentration. Reinf Plast Compos. 2013;32:1526–33.

    Article  Google Scholar 

  9. Bledzki AK, Fink H-P, Specht K. Unidirectional hemp and flax EP- and PP-composites: influence of defined fiber treatments. J Appl Polym Sci. 2004;93:2150–6.

    Article  CAS  Google Scholar 

  10. Kujirai T, Akahira T. Effect of temperature on the deterioration of fibrous insulating materials. Sci Pap Inst Phys Chem Res. 1925;2:223–52.

    CAS  Google Scholar 

  11. Niemczyk A, Dziubek K, Sacher-Majewska B, Czaja K, Dutkiewicz M, Marciniec B. Study of thermal properties of polyethylene and polypropylene nanocomposites with long alkyl chain-substituted POSS fillers. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5497-4.

  12. Pagacz J, Raftopoulos KN, Leszczyńska A, Pielichowski K. Bio-polyamides based on renewable raw materials. J Therm Anal Calorim. 2015;123:1225–37. doi:10.1007/s10973-015-4929-x.

  13. Murias P, Byczynski L, Maciejewski H, Galina H. A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes. J Therm Anal Calorim. 2015;122:215–26.

    Article  CAS  Google Scholar 

  14. Maciejewska M. Synthesis and characterization of textural and thermal properties of polymer monoliths. J Therm Anal Calorim. 2015;121:1333–43.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  16. Kelsey DR, Kiibler KS, Tutunjian PN. Thermal stability of poly(trimethylene terephthalate). Polymer (Guildf). 2005;46:8937–46.

    Article  CAS  Google Scholar 

  17. Aboyade AO, Görgens JF, Carrier M, Meyer EL, Knoetze JH. Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues. Fuel Process. Technol. 2013;106:310–20.

    Article  CAS  Google Scholar 

  18. Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97–104.

    Article  CAS  Google Scholar 

  19. La Mantia FP, Morreale M. Green composites: a brief review. Compos Part A Appl Sci Manuf. 2011;42:579–88.

    Article  Google Scholar 

  20. Assadi R, Colin X, Verdu J. Irreversible structural changes during PET recycling by extrusion. Polymer (Guildf). 2004;45:4403–12.

    Article  CAS  Google Scholar 

  21. Liu Y, Wang M, Pan Z. Catalytic depolymerization of polyethylene terephthalate in hot compressed water. J Supercrit Fluids. 2012;62:226–31.

    Article  CAS  Google Scholar 

  22. D’Almeida JRM, Aquino RCMP, Monteiro SN. Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Compos Part A Appl Sci Manuf. 2006;37:1473–9.

    Article  Google Scholar 

  23. Morán J, Alvarez V, Petrucci R, Kenny J, Vazquez A. Mechanical properties of polypropylene composites based on natural fibers subjected to multiple extrusion cycles. J Appl Polym Sci. 2007;103:228–37.

    Article  Google Scholar 

  24. Somnuk U. Studies of crystallization of natural fibers-polypropylene composites. Nakhon Ratchasima: Suranaree University of Technology; 2007.

    Google Scholar 

  25. Nabar YU, Gupta A, Narayan R. Isothermal crystallization kinetics of poly (ethylene terephthalate)—cellulose acetate blends. Polym Bull. 2005;53:117–25.

    Article  CAS  Google Scholar 

  26. Ruseckaite RA, Jiménez A. Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab. 2003;81:353–8.

    Article  CAS  Google Scholar 

  27. Pielichowski K, Njuguna J. Thermal degradation of polymeric materials. Shrewsbury: Rapra Technology Limited; 2005.

  28. Mutje P, Gironès J, Lòpez A, Llop MF, Vilaseca F. Hemp strands: PP composites by injection molding: effect of low cost physico-chemical treatments. J Reinf Plast Compos. 2006;25:313–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial and logistic support of the “Fonds de recherche du Québec—Nature et technologies (FQRNT)”; the Natural Sciences and Engineering Research Council of Canada (NSERC); and the “Centre Technologique des Résidus Industriels (CTRI)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fotso Talla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotso Talla, A.S., Erchiqui, F., Godard, F. et al. An evaluation of the thermal degradation kinetics of novel melt processed PET–hemp fiber composites. J Therm Anal Calorim 126, 1387–1396 (2016). https://doi.org/10.1007/s10973-016-5628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5628-y

Keywords

Navigation