Skip to main content
Log in

The effect of clay on foaming and mechanical properties of glass foam insulating material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current study, the main composition was prepared using soda-lime glass with dolomite [CaMg(CO3)2] as a foaming agent. The clay powder was added to the main composition in different ratios, and then, the mixtures were shaped by one-axial pressing. Differential thermal analysis (DTA) was used for the determination of crystallization temperatures, and the samples were heated according to the DTA results. Furthermore, heating microscopy was employed for studying the high-temperature behaviours of the mixtures. The samples were characterized using scanning electron microscopy, X-ray diffraction analysis, and comprehensive strength testing. Porosity and bulk density were measured to assess the foaming capability of the mixtures. The results showed that clay addition has a positive role on the mechanical properties of glass foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marangoni M, Secco M, Parisatto M, Artioli G, Bernardo E, Colombo P, Altlasi H, Binmajed M, Binhussain M. Cellular glass–ceramics from a self foaming mixture of glass and basalt scoria. J Non-Cryst Solids. 2014;403:38–46.

    Article  CAS  Google Scholar 

  2. Ding L, Ning W, Wang Q, Shi D, Luo L. Preparation and characterization of glass–ceramic foams from blast furnace slag and waste glass. Mater Lett. 2015;141:327–9.

    Article  CAS  Google Scholar 

  3. Guo Y, Zhangn Y, Huangn H, Meng K, Hu K, Hu P, Wang X, Zhang Z, Meng X. Novel glass-ceramic foams materials based on red mud. Ceram Int. 2014;40:6677–83.

    Article  CAS  Google Scholar 

  4. Serra MF, Conconi MS, Suarez G, Aglietti EF, Rendtorff NM. Volcanic ash as flux in clay based triaxial ceramic materials, effect of the firing temperature in phases and mechanical properties. Ceram Int. 2015;41:6169–77.

    Article  CAS  Google Scholar 

  5. Qu YN, Xu J, Su ZG, Ma N, Zhang XY, Xi XQ, Yang JL. Lightweight and high-strength glass foams prepared by a novel green spheres hollowing technique. Ceram Int. 2016;42:2370–7.

    Article  CAS  Google Scholar 

  6. Qu YN, Su ZG, Xu J, Huo WL, Song KC, Wang YL, Yang JL. Preparation of ultralight glass foams via vacuum-assisted foaming. Mater Lett. 2016;166:35–8.

    Article  CAS  Google Scholar 

  7. Heskya D, Aneziris CG, Groß U, Horn A. Water and waterglass mixtures for foam glass production. Ceram Int. 2015;41:12604–13.

    Article  Google Scholar 

  8. König J, Petersen RR, Yue Y. Fabrication of highly insulating foam glass made from CRT panel glass. Ceram Int. 2015;41:9793.

    Article  Google Scholar 

  9. Petersen RR, König J, Yue Y. The mechanism of foaming and thermal conductivity of glasses foamed with MnO2. J Non-Cryst Solids. 2015;425:74–82.

    Article  CAS  Google Scholar 

  10. Bai J, Yang X, Xu S, Jing W, Yang J. Preparation of foam glass from waste glass and fly ash. Mater Lett. 2014;136:52–4.

    Article  CAS  Google Scholar 

  11. Ponsot I, Bernardo E. Self glazed glass ceramic foams from metallurgical slag and recycled Glass. J Clean Prod. 2013;59:245.

    Article  CAS  Google Scholar 

  12. Ghosh D, Wiest A, Conner RD. Uniaxial quasistatic and dynamic compressive response of foams made from hollow glass microspheres. J Eur Ceram Soc. 2016;36:781–9.

    Article  CAS  Google Scholar 

  13. Petersen RR, König J, Smedskjaer MM, Yue Y. Effect of Na2CO3 as foaming agent on dynamics and structure of foam glass melts. J Non-Cryst Solids. 2014;400:1–5.

    Article  CAS  Google Scholar 

  14. Aragon-Lezama JA, Garcia-Borquez A, Torres-Villaseñor G. Foam behavior of solid glass spheres–Zn22Al2Cu composites under compression stresses. Mater Sci Eng, A. 2015;638:165–73.

    Article  CAS  Google Scholar 

  15. Serra MF, Conconi MS, Gauna MN, Suárez G, Aglietti EF, Rendtorf NM. Mullite (3Al2O3·2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure. J Asian Ceram Soc. 2015;. doi:10.1016/j.jascer.2015.11.003.

    Google Scholar 

  16. Fathi HM, Johnson A. The effect of TiO2 concentration on properties of apatite-mullite glass-ceramics for dental use. Dent Mater. 2016;32:311–2.

    Article  CAS  Google Scholar 

  17. Cai P, Wang Y, Wang T, Wang Q. Improving tribological behaviors of friction material by mullite. Tribol Int. 2016;93:282–8.

    Article  CAS  Google Scholar 

  18. Guoa H, Li W, Ye F. Low-cost porous mullite ceramic membrane supports fabricated from kyanite by casting and reaction sintering. Ceram Int. 2016;42:4819–26.

    Article  Google Scholar 

  19. Guoa H, Ye F, Li W, Songa X, Xie G. Preparation and characterization of foamed microporous mullite ceramics based on kyanite. Ceram Int. 2015;41:14645–51.

    Article  Google Scholar 

  20. Sarkar N, Lee KS, Park JG, Mazumder S, Aneziris CG, Kima IJ. Mechanical and thermal properties of highly porous Al2TiO5–Mullite ceramics. Ceram Int. 2016;42:3548–55.

    Article  CAS  Google Scholar 

  21. Wang X, Li J, Guan W, Fu M, Liu L. Emulsion-templated high porosity mullite ceramics with sericite induced textured structures. Mater Des. 2016;89:1041–7.

    CAS  Google Scholar 

  22. Ventura M, Monteiro G, Almeida RM, Schwarz R, Santos LF. Germanosilicate glass–ceramics for nonlinear optics. J Mater Sci. 2015;50:3477–84.

    Article  CAS  Google Scholar 

  23. Tulyaganov DU, Agathopoulos S, Fernandes HR, Ventura JM, Ferreira JMF. Preparation and crystallization of glasses in the system tetrasilicic mica-fluorapatite-diopside. J Eur Ceram Soc. 2004;24:3521–8.

    Article  CAS  Google Scholar 

  24. Sørensen PM, Pind M, Yue YZ, Rawlings RD, Boccaccini AR, Nielsen ER. Effect of the redox state and concentration of iron on the crystallization behavior of iron-rich aluminosilicate glasses. J Non-Cryst Solids. 2005;351:1246–53.

    Article  Google Scholar 

  25. Mirhadi B, Mehdikhani B. Effect of zinc oxide on micro hardness and sintering behavior of MgO–Al2O3–SiO2 glass ceramic system. J K Ceram Soc. 2012;49(2):146.

    Article  CAS  Google Scholar 

  26. Chen YF, Wang MC, Hon MH. Phase transformation and growth of mullite in kaolin ceramics. J Eur Ceram Soc. 2004;24:2389–97.

    Article  CAS  Google Scholar 

  27. Garcia E, Mesquita-Guimarães J, Miranzo P, Osendi MI. Crystallization studies in mullite and mullite–YSZ beads. J Eur Ceram Soc. 2010;30:2003–8.

    Article  CAS  Google Scholar 

  28. Xiao Z, Sun X, Liu K, Luo W, Wang Y, Luo M, Han R, Liu Y. Crystallization behaviors, thermo-physical properties and seal application of Li2O-ZnO-MgO-SiO2 glass-ceramics. J Alloys Compd. 2016;657:231–6.

    Article  CAS  Google Scholar 

  29. Song L, Wu J, Li Z, Hao X, Yu Y. Crystallization mechanisms and properties of α-cordierite glass–ceramics from K2O–MgO–Al2O3–SiO2 glasses. J Non-Cryst Solids. 2015;419:16–26.

    Article  CAS  Google Scholar 

  30. Xingzhong G, Cai X, Song J, Yang G, Yang H. Crystallization and microstructure of CaO–MgO–Al2O3–SiO2 glass–ceramics containing complex nucleation agents. J Non-Cryst Solids. 2014;405:63–7.

    Article  Google Scholar 

  31. Xiao H, Cheng Y, Yu L, Liu H. A study on the preparation of CMAS glass–ceramics by in situ crystallization. Mater Sci Eng, A. 2006;431:191–5.

    Article  Google Scholar 

  32. Bayrak G, Yilmaz S. Crystallization kinetics of plasma sprayed basalt coatings. Ceram Int. 2006;32:441–6.

    Article  CAS  Google Scholar 

  33. Cristina de Oliveira T, Ribeiro CA, Brunelli DD, Rodrigues LA, Thim GP. The kinetic of mullite crystallization: effect of water content. J Non-Cryst Solids. 2010;356:2980–5.

    Article  Google Scholar 

  34. Ojovan MI. Glass formation in amorphous SiO2 as a percolation phase transition in a system of network defects. J Exp Theor Phys Lett. 2004;79(12):632–4.

    Article  CAS  Google Scholar 

  35. Singh S, Singh K. Nanocrystalline glass ceramics: structural, physical and optical properties. J Mol Struct. 2015;1081:211–6.

    Article  CAS  Google Scholar 

  36. Marghussian VK, Balazadegan OU, Eftekhari-yekta B. Crystallization behaviour, microstructure and mechanical properties of cordierite–mullite glass ceramics. J Alloys Compd. 2009;484:902–6.

    Article  CAS  Google Scholar 

  37. Keyvani N, Marghussian VK, Rezaie HR, Kord M. Effect of Al2O3 content on crystallization behavior, microstructure, and mechanical properties of SiO2–Al2O3–CaO–MgO glass-ceramics. Appl Ceram Techol. 2011;8:203–13.

    Article  CAS  Google Scholar 

  38. Shelby JE. Introduction to glass science and technology. 2nd ed. London: The Royal Society of Chemistry; 2005.

    Google Scholar 

  39. Warude A. Analysis of glass mold to enhance rate of heat transfer. Graduate Teses and Dissertations. University of South Florida. Scholar Commons. 2004. http://scholarcommons.usf.edu/etd/1293/ Analysis of glass mold to enhance rate of heat transfer. Accessed 15 Jan 2016.

  40. Scheffler M, Colombo P, editors. Cellular ceramics: structure, manufacturing, properties and applications. Weinheim: Wiley-VCH; 2005.

    Google Scholar 

  41. Xudong C, Wu S, Zhou J. Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater. 2013;40:869–74.

    Article  Google Scholar 

  42. Lin B, Li S, Hou X, Li H. Preparation of high performance mullite ceramics from high-aluminum fly ash by an effective method. J Alloys Compd. 2015;623:359–61.

    Article  CAS  Google Scholar 

  43. Sasaki K, Qiu X, Hosomomi Y, Moriyama S, Hirajima T. Effect of natural dolomite calcination temperature on sorption of borate onto calcined products. Microporous Mesoporous Mater. 2013;171:1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to the Sakarya University Engineering Faculty and the Department of Metallurgy and Material Engineering for supporting this work. Furthermore, I would like to thank Gizem-frit Corp., for its technical support. This study was also supported by Sakarya University, Scientific Research Projects Unit (Project No: 2013-01-08-032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ediz Ercenk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercenk, E. The effect of clay on foaming and mechanical properties of glass foam insulating material. J Therm Anal Calorim 127, 137–146 (2017). https://doi.org/10.1007/s10973-016-5582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5582-8

Keywords

Navigation