Skip to main content
Log in

Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid

Effects of temperature and nanoparticles concentration

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hybrid nanofluids are novel nanofluids and can be prepared by suspending various kinds of nanoparticles in base fluid. In this paper, an experimental investigation on the effects of temperature and nanoparticles concentration on the thermal conductivity of ZnO–TiO2/EG hybrid nanofluids is presented. The experiments were implemented at temperature ranging from 25 to 50 °C and solid volume fraction range of 0–3.5 %. Experiments indicate that the thermal conductivity enhances with increasing the solid volume fraction and temperature. It was found that the variation of thermal conductivity enhancement of nanofluids with solid volume fraction at higher temperatures is greater than that at lower temperature. Moreover, it can be also seen that the variation of thermal conductivity enhancement of nanofluids with temperature at higher solid volume fraction is more than that at lower solid volume fraction. Finally, based on experimental data, in order to predict the thermal conductivity ratio of ZnO–TiO2/EG hybrid nanofluids, a correlation was proposed. Deviation analysis of the thermal conductivity ratio was also performed. Comparison between experimental data and the proposed correlation outputs revealed that this correlation has a good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbasi S, Zebarjad SM, Baghban SHN, Youssefi A, Ekrami-Kakhki M-S. Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes with TiO2 nanoparticles/water nanofluids. J Therm Anal Calorim. 2016;123(1):81–9.

    Article  CAS  Google Scholar 

  2. Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115(2):1883–91.

    Article  Google Scholar 

  3. Shamshirband S, Malvandi A, Karimipour A, Goodarzi M, Afrand M, Petković D, et al. Performance investigation of micro-and nano-sized particle erosion in a 90 elbow using an ANFIS model. Powder Technol. 2015;284:336–43.

    Article  CAS  Google Scholar 

  4. Esfe MH, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124(1):455–60.

    Article  Google Scholar 

  5. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121(3):1273–8.

    Article  CAS  Google Scholar 

  6. Esfe MH, Akbari M, Semiromi DT, Karimiopour A, Afrand M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Trans Res. 2014;45(5):409–32.

    Article  Google Scholar 

  7. Esfe MH, Arani AAA, Yan W-M, Ehteram H, Aghaie A, Afrand M. Natural convection in a trapezoidal enclosure filled with carbon nanotube–EG–water nanofluid. Int J Heat Mass Transf. 2016;92:76–82.

    Article  Google Scholar 

  8. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  Google Scholar 

  9. Esfe MH, Akbari M, Karimipour A, Afrand M, Mahian O, Wongwises S. Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties. Int J Heat Mass Transf. 2015;85:656–66.

    Article  Google Scholar 

  10. Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan W-M. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122(2):863–84.

    Article  CAS  Google Scholar 

  11. Esfe MH, Afrand M, Karimipour A, Yan W-M, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass. 2015;67:173–5.

    Article  Google Scholar 

  12. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Trans ASME. 2003;125(4):567–74.

    Article  CAS  Google Scholar 

  13. Li CH, Peterson G. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys. 2007;101(4):44312.

    Article  Google Scholar 

  14. Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci. 2009;33(4):706–14.

    Article  CAS  Google Scholar 

  15. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 2010;34(2):210–6.

    Article  CAS  Google Scholar 

  16. Sharma P, Baek I-H, Cho T, Park S, Lee KB. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids. Powder Technol. 2011;208(1):7–19.

    Article  CAS  Google Scholar 

  17. Sundar LS, Singh MK, Sousa AC. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass. 2013;44:7–14.

    Article  Google Scholar 

  18. Jeong J, Li C, Kwon Y, Lee J, Kim SH, Yun R. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig. 2013;36(8):2233–41.

    Article  CAS  Google Scholar 

  19. Esfe MH, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of MgO–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. 2015;119(2):1205–13.

    Article  Google Scholar 

  20. Li H, Wang L, He Y, Hu Y, Zhu J, Jiang B. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl Therm Eng. 2015;88:363–8.

    Article  CAS  Google Scholar 

  21. Esfe MH, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120(2):1145–9.

    Article  Google Scholar 

  22. Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):3107.

    Article  Google Scholar 

  23. Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):3107.

    Article  Google Scholar 

  24. Teng T-P, Hung Y-H, Teng T-C, Mo H-E, Hsu H-G. The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng. 2010;30(14):2213–8.

    Article  CAS  Google Scholar 

  25. Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118(1):287–94.

    Article  Google Scholar 

  26. Esfe MH, Saedodin S, Naderi A, Alirezaie A, Karimipour A, Wongwises S, et al. Modeling of thermal conductivity of ZnO–EG using experimental data and ANN methods. Int Commun Heat Mass. 2015;63:35–40.

    Article  Google Scholar 

  27. Esfe MH, Saedodin S, Sina N, Afrand M, Rostami S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass. 2015;68:50–7.

    Article  Google Scholar 

  28. Esfe MH, Afrand M, Yan W-M, Akbari M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int Commun Heat Mass. 2015;66:246–9.

    Article  Google Scholar 

  29. Esfe MH, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S, et al. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int Commun Heat Mass. 2015;67:46–50.

    Article  Google Scholar 

  30. Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloid Surf A. 2011;388(1):41–8.

    Article  CAS  Google Scholar 

  31. Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60.

    Article  CAS  Google Scholar 

  32. Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim Acta. 2012;549:87–94.

    Article  CAS  Google Scholar 

  33. Nine MJ, Batmunkh M, Kim J-H, Chung H-S, Jeong H-M. Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization. J Nanosci Nanotechnol. 2012;12(6):4553–9.

    Article  CAS  Google Scholar 

  34. Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int. 2013;39(6):6415–25.

    Article  CAS  Google Scholar 

  35. Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram Int. 2013;39(4):3885–91.

    Article  CAS  Google Scholar 

  36. Nine MJ, Munkhbayar B, Rahman MS, Chung H, Jeong H. Highly productive synthesis process of well dispersed Cu2O and Cu/Cu2O nanoparticles and its thermal characterization. Mater Chem Phys. 2013;141(2):636–42.

    Article  CAS  Google Scholar 

  37. Batmunkh M, Tanshen MR, Nine MJ, Myekhlai M, Choi H, Chung H, et al. Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle. Ind Eng Chem Res. 2014;53(20):8445–51.

    Article  CAS  Google Scholar 

  38. Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Therm Fluid Sci. 2014;52:104–15.

    Article  CAS  Google Scholar 

  39. Chen L, Cheng M, Yang D, Yang L. Enhanced thermal conductivity of nanofluid by synergistic effect of multi-walled carbon nanotubes and Fe2O3 nanoparticles. Appl Mech Mater. 2014;548–549:118–23.

    Article  Google Scholar 

  40. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass. 2014;52:73–83.

    Article  CAS  Google Scholar 

  41. Esfe MH, Arani AAA, Rezaie M, Yan W-M, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass. 2015;66:189–95.

    Article  Google Scholar 

  42. Esfe MH, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci. 2014;55:1–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Afrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toghraie, D., Chaharsoghi, V.A. & Afrand, M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim 125, 527–535 (2016). https://doi.org/10.1007/s10973-016-5436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5436-4

Keywords

Navigation