Skip to main content
Log in

Synthesis and characterization of biodegradable copoly(ether-ester-urethane)s and their chitin whisker nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of copoly(ether-ester-urethane)s have been synthesized from poly(3-hydroxybutyrate) (PHB) diol prepolymer, as hard segments, and copoly(ε-caprolactone-ethylene glycol-ε-caprolactone) (PCL-PEG-PCL) diols with different PEG block lengths, as soft segments, with/without chitin whiskers (ChW) using hexamethylene diisocyanate, as a coupling agent, in one-step polymerization. The PHB content in the resulting copolymers was 0 and 40 %, and the content of ChW was varied from 0 to 5 %. The chemical structure of the resulting copolymers was characterized by FTIR, 1H-NMR and 13C-NMR spectra. The effect of chemical structure and ChW content on the thermal properties was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The DSC data revealed that the ΔH m of both PHB and PCL-PEG-PCL slightly increases with increasing the ChW content. The cold and melt crystallization of PHB enhanced with increasing ChW content. The TG data revealed that the thermal stability of copolymers slightly enhanced at high content of ChW. The swelling behavior of the copolymers was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yokoo T, Matsumoto K, Ooba T, Morimoto K, Taguchi S. Enhanced poly (3-hydroxybutyrate) production in transgenic tobacco BY-2 cells using engineered acetoacetyl-CoA reductase. Biosci Biotechnol Biochem. 2015;79:986–8.

    Article  CAS  Google Scholar 

  2. Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 1990;54:450–72.

    CAS  Google Scholar 

  3. Nair MB, Baranwal G, Vijayan P, Keyan KS, Jayakumar R. Composite hydrogel of chitosan–poly (hydroxybutyrate-co-valerate) with chondroitin sulfate nanoparticles for nucleus pulposus tissue engineering. Colloids Surf B Biointerfaces. 2015;136:84–92.

    Article  CAS  Google Scholar 

  4. Parveez GKA, Bahariah B, Ayub NH, Masani MYA, Rasid OA, Tarmizi AH, Ishak Z. Production of polyhydroxybutyrate in oil palm (Elaeis guineensis Jacq.) mediated by microprojectile bombardment of PHB biosynthesis genes into embryogenic calli. Front Plant Sci. 2015;6:1–12.

    Article  Google Scholar 

  5. Sznajder A, Pfeiffer D, Jendrossek D. Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16. Appl Environ Microbiol. 2015;8:1847–58.

    Article  Google Scholar 

  6. Xu M, Qin J, Rao Z, You H, Zhang X, Yang T, Wang X, Xu Z. Effect of Polyhydroxybutyrate (PHB) storage on l-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microb Cell Fact. 2016;15:1–15.

    Article  CAS  Google Scholar 

  7. Wu H, Wang H, Chen J, Chen G-Q. Effects of cascaded vgb promoters on poly (hydroxybutyrate)(PHB) synthesis by recombinant Escherichia coli grown micro-aerobically. Appl Microbiol Biotechnol. 2014;98:10013–21.

    Article  CAS  Google Scholar 

  8. De Koning G, Lemstra P. Crystallization phenomena in bacterial poly [(R)-3-hydroxybutyrate]: 2. Embrittlement and rejuvenation. Polymer. 1993;34:4089–94.

    Article  Google Scholar 

  9. Khanna S, Srivastava AK. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 2005;40:607–19.

    Article  CAS  Google Scholar 

  10. Marchessault R, Okamura K, Su C. Physical properties of poly (β-hydroxy butyrate). II. Conformational aspects in solution. Macromolecules. 1970;3:735–40.

    Article  CAS  Google Scholar 

  11. Wang L, Zhu W, Wang X, Chen X, Chen GQ, Xu K. Processability modifications of poly (3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci. 2008;107:166–73.

    Article  CAS  Google Scholar 

  12. Hong S-G, Gau T-K, Huang S-C. Enhancement of the crystallization and thermal stability of polyhydroxybutyrate by polymeric additives. J Therm Anal Calorim. 2010;103:967–75.

    Article  Google Scholar 

  13. Malinová L, Brožek J. Mixtures poly ((R)-3-hydroxybutyrate) and poly (l-lactic acid) subjected to DSC. J Therm Anal Calorim. 2010;103:653–60.

    Article  Google Scholar 

  14. Wen X, Lu X, Peng Q, Zhu F, Zheng N. Crystallization behaviors and morphology of biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate). J Therm Anal Calorim. 2012;109:959–66.

    Article  CAS  Google Scholar 

  15. Hong S-G, Hsu H-W, Ye M-T. Thermal properties and applications of low molecular weight polyhydroxybutyrate. J Therm Anal Calorim. 2013;111:1243–50.

    Article  CAS  Google Scholar 

  16. Li H, Lu X, Yang H, Hu J. Non-isothermal crystallization of P (3HB-co-4HB)/PLA blends. J Therm Anal Calorim. 2015;122:817–29.

    Article  CAS  Google Scholar 

  17. Zaldivar MP, Fernández NG, Peña CG, Paneque MR, Valentín SA. Synthesis and characterization of a new semi-interpenetrating polymer network hydrogel obtained by gamma radiations. J Therm Anal Calorim. 2011;106:725–30.

    Article  CAS  Google Scholar 

  18. Kuntanoo K, Promkotra S, Kaewkannetra P (2015) Fabrication of novel polyhydroxybutyrate-co-hydroxyvalerate (PHBV) mixed with natural rubber latex. In: Key Engineering Materials: Trans Tech Publ, pp 404–408

  19. Reis KC, Pereira L, Melo ICNA, Marconcini JM, Trugilho PF, Tonoli GHD. Particles of coffee wastes as reinforcement in polyhydroxybutyrate (PHB) based composites. Mater Res. 2015;18:546–52.

    Article  Google Scholar 

  20. Wei L, McDonald AG, Stark NM. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromolecules. 2015;16:1040–9.

    Article  CAS  Google Scholar 

  21. Silvino AC, da Silva JC. Preparation of blends of oligo ([R, S]-3-hydroxybutyrate) and poly ([R]-3-hydroxybutyrate): thermal properties and molecular dynamic studies. Polym Test. 2015;42:144–50.

    Article  CAS  Google Scholar 

  22. Hirt TD, Neuenschwander P, Suter UW. Synthesis of degradable, biocompatible, and tough block-copolyesterurethanes. Macromol Chem Phys. 1996;197:4253–68.

    Article  CAS  Google Scholar 

  23. Saad GR, Lee Y, Seliger H. Synthesis and characterization of biodegradable poly (ester-urethanes) based on bacterial poly (R-3-hydroxybutyrate). J Appl Polym Sci. 2002;83:703–18.

    Article  CAS  Google Scholar 

  24. Saad GR. Calorimetric and dielectric study of the segmented biodegradable poly (ester-urethane) s based on bacterial poly [(R)-3-hydroxybutyrate]. Macromol Biosci. 2001;1:387–96.

    Article  CAS  Google Scholar 

  25. Saad GR, Seliger H. Biodegradable copolymers based on bacterial poly ((R)-3-hydroxybutyrate): thermal and mechanical properties and biodegradation behaviour. Polym Degrad Stab. 2004;83:101–10.

    Article  CAS  Google Scholar 

  26. Aziz MSA, Naguib HF, Saad GR. Non-isothermal crystallization kinetics of bacterial poly (3-hydroxybutyrate) in poly (3-hydroxybutyrate-co-butylene adipate) urethanes. Thermochim Acta. 2014;591:130–9.

    Article  Google Scholar 

  27. Zhao Q, Cheng G, Li H, Ma X, Zhang L. Synthesis and characterization of biodegradable poly (3-hydroxybutyrate) and poly (ethylene glycol) multiblock copolymers. Polymer. 2005;46:10561–7.

    Article  CAS  Google Scholar 

  28. Zhao Q, Cheng G. Preparation of biodegradable poly (3-hydroxybutyrate) and poly (ethylene glycol) multiblock copolymers. J Mater Sci. 2004;39:3829–31.

    Article  CAS  Google Scholar 

  29. Loh XJ, Goh SH, Li J. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly [(R)-3-hydroxybutyrate], poly (ethylene glycol), and poly (propylene glycol). Biomaterials. 2007;28:4113–23.

    Article  CAS  Google Scholar 

  30. Zhang C, Zhang N, Wen X. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels. J Biomed Mater Res A. 2007;82:637–50.

    Article  Google Scholar 

  31. Gorna K, Polowinski S, Gogolewski S. Synthesis and characterization of biodegradable poly (ϵ-caprolactone urethane) s. I. Effect of the polyol molecular weight, catalyst, and chain extender on the molecular and physical characteristics. J Polym Sci Pol Chem. 2002;40:156–70.

    Article  CAS  Google Scholar 

  32. Marcos-Fernández A, Abraham GA, Valentín J, Román JS. Synthesis and characterization of biodegradable non-toxic poly (ester-urethane-urea) s based on poly (ε-caprolactone) and amino acid derivatives. Polymer. 2006;47:785–98.

    Article  Google Scholar 

  33. Chan-Chan L, Solis-Correa R, Vargas-Coronado R, Cervantes-Uc J, Cauich-Rodríguez J, Quintana P, et al. Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater. 2010;6:2035–44.

    Article  CAS  Google Scholar 

  34. Rueda-Larraz L, d’Arlas BF, Tercjak A, Ribes A, Mondragon I, Eceiza A. Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur Polym J. 2009;45:2096–109.

    Article  CAS  Google Scholar 

  35. Saad GR, Lee Y, Seliger H. Synthesis and thermal properties of biodegradable poly (ester-urethane) s based on chemo-synthetic poly [(R, S)-3-hydroxybutyrate]. Macromol Biosci. 2001;1:91–9.

    Article  CAS  Google Scholar 

  36. Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26:3961–71.

    Article  CAS  Google Scholar 

  37. Piao L, Dai Z, Deng M, Chen X, Jing X. Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst. Polymer. 2003;44:2025–31.

    Article  CAS  Google Scholar 

  38. Kaushik A, Singh M, Verma G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohyd Polym. 2010;82:337–45.

    Article  CAS  Google Scholar 

  39. Naguib HF, Aziz MSA, Saad GR. Effect of organo-modified montmorillonite on thermal properties of bacterial poly (3-hydroxybutyrate). Polym Plast Technol. 2014;53:90–6.

    Article  CAS  Google Scholar 

  40. Naguib H, Aziz MA, Saad G. Synthesis, morphology and thermal properties of polyurethanes nanocomposites based on poly (3-hydroxybutyrate) and organoclay. J Ind Chem. 2013;19:56–62.

    Article  CAS  Google Scholar 

  41. Carli LN, Daitx TS, Guégan R, Giovanela M, Crespo JS, Mauler RS. Biopolymer nanocomposites based on poly (hydroxybutyrate-co-hydroxyvalerate) reinforced by a non-ionic organoclay. Polym Int. 2015;64:235–41.

    Article  CAS  Google Scholar 

  42. Silverman T, Naffakh M, Marco C, Ellis G. Morphology and thermal properties of biodegradable poly (hydroxybutyrate-co-hydroxyvalerate)/tungsten disulphide inorganic nanotube nanocomposites. Mater Chem. 2016;170:145–53.

    CAS  Google Scholar 

  43. Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y. Poly (hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: preparation, characterization and cytocompatibility. Mater Sci Eng C. 2016;58:757–67.

    Article  Google Scholar 

  44. Larsson M, Bergstrand A, Mesiah L, Van Vooren C, Larsson A. Nanocomposites of polyacrylic acid nanogels and biodegradable polyhydroxybutyrate for bone regeneration and drug delivery. J Nanomater. 2014;2014:1–9.

    Article  Google Scholar 

  45. Cao X, Habibi Y, Magalhães WLE, Rojas OJ, Lucia LA. Cellulose nanocrystals-based nanocomposites: fruits of a novel biomass research and teaching platform. Curr Sci. 2011;100:1172–6.

    CAS  Google Scholar 

  46. Hong S-G, Huang S-C. Effect of modified silica on the crystallization and degradation of poly (3-hydroxybutyrate). J Therm Anal Calorim. 2015;119:1693–702.

    Article  CAS  Google Scholar 

  47. Saad GR, Salama HE, Mohamed NA, Sabaa MW. Crystallization and thermal properties of biodegradable polyurethanes based on poly [(R)-3-hydroxybutyrate] and their composites with chitin whiskers. J Appl Polym Sci. 2014;131:40784–96.

    Article  Google Scholar 

  48. Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly (ε-caprolactone) and poly (ethylene glycol) as soft segment. Eur Polym J. 2007;43:1838–46.

    Article  CAS  Google Scholar 

  49. Yeganeh H, Jamshidi H, Jamshidi S. Synthesis and properties of novel biodegradable poly (ε-caprolactone)/poly (ethylene glycol)-based polyurethane elastomers. Polym Int. 2007;56:41–9.

    Article  CAS  Google Scholar 

  50. Xie Z, Lu C, Chen X, Chen L, Hu X, Shi Q, et al. A facile approach to biodegradable poly (ε-caprolactone)-poly (ethylene glycol)-based polyurethanes containing pendant amino groups. Eur Polym J. 2007;43:2080–7.

    Article  CAS  Google Scholar 

  51. Naguib HF, Aziz MSA, Sherif SM, Saad GR. Synthesis and thermal characterization of poly (ester-ether urethane) s based on PHB and PCL-PEG-PCL blocks. J Polym Res. 2011;18:1217–27.

    Article  CAS  Google Scholar 

  52. Loh XJ, Sng KBC, Li J. Synthesis and water-swelling of thermo-responsive poly (ester urethane) s containing poly (ε-caprolactone), poly (ethylene glycol) and poly (propylene glycol). Biomaterials. 2008;29:3185–94.

    Article  CAS  Google Scholar 

  53. Endres T, Zheng M, Kılıç A, Turowska A, Beck-Broichsitter M, Renz H, Merkel OM, Kissel T. Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots. Mol Pharm. 2014;11:1273–81.

    Article  CAS  Google Scholar 

  54. Gopalan Nair K, Dufresne A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules. 2003;4:657–65.

    Article  Google Scholar 

  55. Bordes P, Pollet E, Avérous L. Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci. 2009;34:125–55.

    Article  CAS  Google Scholar 

  56. Coleman MM, Skrovanek DJ, Hu J, Painter PC. Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules. 1988;21:59–65.

    Article  CAS  Google Scholar 

  57. Srichatrapimuk VW, Cooper SL. Infrared thermal analysis of polyurethane block polymers. J Macromol Sci B. 1978;15:267–311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, N.A., Salama, H.E., Sabaa, M.W. et al. Synthesis and characterization of biodegradable copoly(ether-ester-urethane)s and their chitin whisker nanocomposites. J Therm Anal Calorim 125, 163–173 (2016). https://doi.org/10.1007/s10973-016-5388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5388-8

Keywords

Navigation