Skip to main content
Log in

Thermodynamics of molecular complexation of glycyl–glycyl–glycine with cryptand [2.2.2] in water–dimethylsulfoxide solvent at 298.15 K

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of water–dimethylsulfoxide (H2O–DMSO) solvent on the reaction of the molecular complex formation between cryptand [2.2.2] (L) and glycyl–glycyl–glycine (3Gly) was studied at T = 298.15 K. The thermodynamic parameters for the reaction (lgK 0, Δr G 0, Δr H 0, TΔr S 0) were obtained from calorimetric titration experiments carried out by means of the calorimetric system TAM III (TA Instruments, USA). The binding mode of 3Gly–L complexation in H2O–DMSO solvent was determined by NMR spectroscopy, and the spectroscopic data were also used to calculate the [3GlyL] stability constants. A slight increase in complex stability and reaction exothermicity was observed at increasing DMSO content. The thermodynamic parameters for [3GlyL] are compared with thermodynamic parameters of complex formation of 18-crown-6 with amino acids and 3Gly in mixed solvents using the solvation-thermodynamic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lehn JM. Supramolecular chemistry. Concepts and perspectives. Germany: VCH Verlagsgesellschaft mbH; 1995.

    Book  Google Scholar 

  2. Dietrich B, Viout P, Lehn LM. Macrocyclic chemistry. Germany: VCH Verlagsgesellschaft mbH; 1993.

    Google Scholar 

  3. Steed JW, Atwood JL. Supramolecular chemistry. New York: Wiley; 2000.

    Google Scholar 

  4. Tsurko J, Kunz W, editors. Thermodynamics of amino acid and protein solutions. India: Transworld Research Network; 2010.

    Google Scholar 

  5. Duhovich FS, Darhovskij MB, Gorbatova EN, Kurochkin VK. Molekulyarnoe uznavanie: farmakologicheskie aspekty (Molecular recognition: pharmacological aspects). Moscow: Meditsina; 2004.

    Google Scholar 

  6. Fitzpatrick DW, Ulrich HJ, editors. Macrocyclic chemistry: new research developments. New York: Nova Science Publishers Inc.; 2010.

    Google Scholar 

  7. Rahmen MA, Kwon NH, Won MS, Hyun MH, Shim YB. Selective binding of NH4 + by redox-active crown ethers: application to a NH4 + sensor. Anal Chem. 2004;76(13):3660–5.

    Article  Google Scholar 

  8. Kaller M, Laschat S. Liquid crystalline crown ethers. Top Curr Chem. 2012;318:109–92.

    Article  CAS  Google Scholar 

  9. Arena G, Pappalardo A, Pappalardo S, Gattuso G, Notti A, Parisi MF, Pisagatti I, Sgarlata C. Complexation of biologically active amines by a water-soluble calyx[5]arene. J Therm Anal Calorim. 2015;121:1073–9.

    Article  CAS  Google Scholar 

  10. Amini MK, Mazloum M, Ensafi AA. Lead selective membrane electrode using cryptand (222) neutral carrier. Fresenius J Anal Chem. 1999;364:690–3.

    Article  CAS  Google Scholar 

  11. Wszelaka-Rylik M, Gierycz P. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with tropane alkaloids. J Therm Anal Calorim. 2015;121:1359–64.

    Article  CAS  Google Scholar 

  12. Kulikov OV, Terekhova IV. Thermodynamics of complexation of α-amino acids and peptides containing nonpolar side groups with 18-crown-6 in water. Russ J Coor Chem. 1998;24:373–7.

    CAS  Google Scholar 

  13. Kulikov OV, Krestov GA. Thermodynamics and mechanism of complexation of peptides with 18-crown-6 in water. Pure Appl Chem. 1995;67(7):1103–8.

    Article  CAS  Google Scholar 

  14. Terekhova IV, Parfenyuk EV, Kulikov OV. Thermodynamics of the interactions of peptides with α- and β-cyclodextrins. J Therm Anal Calorim. 2002;68:185–9.

    Article  CAS  Google Scholar 

  15. Zielenkievics W, Terekhova IV, Kozbial M, Kumeev RS. Thermodynamic study on inclusion complex formation of riboflavin with hydroxypropyl-β-cyclodextrin in water. J Therm Anal Calorim. 2010;101:595–600.

    Article  Google Scholar 

  16. Buschmann HJ, Schollmeyer E, Mutihac L. The complexation of amino alcohols and amino acids by the crown ether 18C6 and the cryptand (222) in methanol. Thermochim Acta. 1998;316:189–92.

    Article  CAS  Google Scholar 

  17. Danil de Namor AF, Ritt MC, Lewis DFV, Schwing-Weill MJ, Arnaud-Neu F. Solution thermodynamics of amino acid-18-crown-6 and amino acid-cryptand 222 complexation reactions. Pure Appl Chem. 1991;63:1435–9.

    Article  Google Scholar 

  18. Danil de Namor AF, Ritt MC, Schwing-Weill MJ, Arnaud-Neu F, Lewis DVF. Solution thermodynamics of amino acid-l8-crown-6 and amino acid-cryptand 222 complexes in methanol and ethanol. Linear enthalpy-entropy compensation effect. J Chem Soc Faraday Trans. 1991;87:3231–9.

    Article  Google Scholar 

  19. Krestov GA. Ionic solvation. New York: Ellis Horwood; 1994.

    Google Scholar 

  20. Marcus Y. Solubility and solvation in mixed solvent systems. Pure Appl Chem. 1990;62:2069–76.

    CAS  Google Scholar 

  21. Matteoli E, Lepori L. Kirkwood–Buff integrals and preferential solvation in ternary non-electrolyte mixtures. J Chem Soc Faraday Trans. 1995;91:431–46.

    Article  CAS  Google Scholar 

  22. Hefter G, Marcus Y, Waghorne WE. Enthalpies and entropies of transfer of electrolytes and ions from water to mixed aqueous organic solvents. Chem Rev. 2002;102:2773–836.

    Article  CAS  Google Scholar 

  23. Zaitseva IS, El’tsov SV, Kabakova EN, Bondarev NV. Correlation analysis of the solvent effects on the thermodynamic functions of complexation of sodium and potassium ions with 18-crown-6 ether in aqueous-organic solvents. Russ J Gen Chem. 2003;73:1021–6.

    Article  CAS  Google Scholar 

  24. Joźwiak M, Madej L. Complex formation of crown ethers and cations in water–organic solvent mixtures: the thermodynamic functions of complex formation of benzo-15-crown-5 with Na+ in water + ethanol at 298.15 K. J Chem Eng Data. 2010;55:1965–70.

    Article  Google Scholar 

  25. Joźwiak M. The effect of carbonyl carbon atom replacement in acetone molecule (ACN) by sulfur atom (DMSO). Part III. Effect of base–acid properties of the mixtures of water with acetone or dimethylsulfoxide on the solution enthalpy of cyclic ethers in mixed solvent. J Therm Anal Calorim. 2010;101:1039–45.

  26. Joźwiak M. The effect of carbonyl carbon atom replacement in acetone molecule (ACN) by sulfur atom (DMSO). The preferential solvation of cyclic ethers. J Therm Anal Calorim. 2008;93:701–5.

  27. Usacheva TR, Sharnin VA, Chernov IV, Matteoli E. Calorimetric investigation of the reaction of molecular complex formation of 18-crown-6 with d,l-alanine in water–ethanol mixtures. J Therm Anal Calorim. 2013;112:983–9.

    Article  CAS  Google Scholar 

  28. Usacheva TR, Chernov IV, Sharnin VA, Matteoli E, Terekhova IV, Kumeev RS. The influence of water–ethanol mixture on the thermodynamics of complex formation between 18-crown-6 ether and l-phenylalanine. Chem Phys Lett. 2012;543:155–8.

    Article  CAS  Google Scholar 

  29. Usacheva TR, Chernov IV, Sharnin VA, Voronina SI, Matteoli E. Molecular complex formation between l-phenylalanine and 18-crown-6 in H2O–DMSO solvents studied by titration calorimetry at T = 298.15 K. J Therm Anal Calorim. 2013;112:399–405.

  30. Usacheva TR, Sharnin VA. Effect of solvation on the complexation of 18-crown-6 with amino acids in aqueous–organic media. Russ J Gen Chem. 2014;84:911–7.

    Article  CAS  Google Scholar 

  31. Usacheva TR, Pham Thi L, Terekhova IV, Kumeev RS, Sharnin VA. Application of isothermal titration calorimetry for evaluation of water–acetone and water–dimethylsulfoxide solvent influence on the molecular complex formation between 18-crown-6 and triglycine at 298.15 K. J Therm Anal Calorim. 2015;121:975–81.

  32. Sharnin VA. Effect of aqueous–organic solvents on complexation thermodynamics: I. Gibbs energy difference in formation of amino and carboxylate complexes and solvation of reagents. Russ J Gen Chem. 1999;69:1368–76.

  33. Kolthoff IM, Chantooni Jr MK. Chemistry relationship between transfer activity coefficients, S1γS2, of cryptate 2.2.2 complexes and their stability constant in various solvents (ligands/complexation). Proc Natl Acad Sci USA. 1980;77:5040–2.

  34. Chantooni JR MK, Kolthoff IM. Chemistry transfer activity coefficients between water and methanol of complexes of some univalent and barium ions with dibenzocryptand 2.2.2, cryptand 2.2.2, and 18-crown-6 (ligands/complexation/hydrophobic solvation). Proc Natl Acad Sci USA. 1981; 78:7245–7.

  35. Korosterev PP. Reactives for technical analysis. The manual. Moscow: Metallurgiya; 1988 (in Russian).

  36. Wadsö I, Goldberg RN. Standard in isothermal microcalorimetry. Pure Appl Chem. 2001;73:1625–39.

    Article  Google Scholar 

  37. Borodin VA, Vasil’ev VP, Kozlovskiy EV. Processing of results of calorimetric measurements on a computer when studying the complex equilibria in solutions. Zh Neorg Khim. 1982;27:2169–72 (in Russian).

    CAS  Google Scholar 

  38. Sharnin VA, Ledenkov SF, Usacheva TR. Studies of the complex formation of silver (I) ion with 18-crown-6 in H2O–DMSO mixtures by calorimetric technique. J Therm Anal Calorim. 2002;70:209–16.

    Article  Google Scholar 

  39. Usacheva TR, Sharnin VA. Formation of molecular complexes between 18-crown-6 and amino acids in aqueous–organic media. Russ J Gen Chem. 2014;84(2):227–34.

    Article  CAS  Google Scholar 

  40. Buschmann HJ, Mutihac L, Jansen K. Complexation of some amine compounds by macrocyclic receptors. J Incl Phenom Macrocycl Chem. 2001;39:1–11.

    Article  CAS  Google Scholar 

  41. Buschmann HJ, Wenz G, Schollmeyer E, Mutihac L. Solvent influence upon complex formation between crown ethers and unprotonated amins. Thermochim Acta. 1995;261:1–5.

    Article  CAS  Google Scholar 

  42. Rudiger V, Schneides HJ, Solov’ev VP, Kazachenko VP, Raevsky OA. Crown ethers-ammonium complexes: binding mechanisms and solvent effects. Eur J Org Chem. 1999;8:1847–56.

    Article  Google Scholar 

  43. Smirnov VI, Badelin VG. Thermochemistry of dissolution of glycine, glycylglycine and diglycylglycine in a mixed solvent water–dimethyl sulfoxide at 298.15 K. Biophysics. 2004;49:375–80.

    Google Scholar 

  44. Abraham MH, Ling HC. Thermodynamics of transfer of cryptand 222 from water to non-aqueous solvents and of protonated cryptand 222 from water to methanol. J Chem Soc Faraday Trans. 1984;80:3445–50.

    Article  CAS  Google Scholar 

  45. Usacheva TR, Kuz’mina KI, Pham Thi L, Kuz’mina IA, Sharnin VA. Gibbs energies of transferring triglycine from water into H2O–DMSO solvent. Russ J Phys Chem A. 2014;88:1357–60.

    Article  CAS  Google Scholar 

  46. Usacheva TR, Kuz’mina IA, Sharnin VA, Sidorenko NS, Voronina SI. The influence of solvation on the formation of Ag+ complexes with 18-crown-6 ether in water-dimethyl sulfoxide solvents. Russ J Phys Chem A. 2011;85:952–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was carried out in the Research Institute of Thermodynamics and Kinetics of Chemical Processes of the Ivanovo State University of Chemistry and Technology in the framework of the State Assignment of the Ministry of Education and Science of the Russian Federation (Project No. 2293). We thank “The upper Volga region centre of physicochemical research” (Institute of Solution Chemistry of RAS) for the NMR equipment used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Usacheva.

Ethics declarations

Conflict of interest

The authors confirm that this article content has not conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usacheva, T.R., Pham Thi, L., Terekhova, I.V. et al. Thermodynamics of molecular complexation of glycyl–glycyl–glycine with cryptand [2.2.2] in water–dimethylsulfoxide solvent at 298.15 K. J Therm Anal Calorim 126, 307–314 (2016). https://doi.org/10.1007/s10973-016-5383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5383-0

Keywords

Navigation