Skip to main content
Log in

Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, nearly spherical CuO nanopowders (NPs) were synthesized in a high-energy ball-milling method at room temperature for different milling times (20 and 40 h) at dry medium. The structure, particle size, purity and morphology of the resulting CuO NPs were characterized by X-ray diffraction, inductively coupled plasma and scanning electron microscopy (SEM) techniques. The results showed that the NPs obtained after 40 h have the smallest particle with only 31 nm. These NPs were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. The photographs of field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy showed that the surface of CuO NPs was successfully coated with AP particles. Also, differential scanning calorimetry (DSC) and thermogravimetry analysis (TG) techniques were used to investigate the thermal decomposition of pure and AP + CuO nanocomposites. The DSC/TG results showed that CuO NPs with 31 nm had an excellent catalytic effect on the AP thermal decomposition property and by adding 2 and 5 % additive, decomposition temperatures decreased by 81.9 and 90.4 °C, and the heat of decomposition increased by 707.6 and 839.9 J g−1, respectively. Finally, the apparent activation energy (E), ΔG #, ΔH #, ΔS # of thermal decomposition processes of pure and treated samples were obtained by non-isothermal methods proposed by Kissinger and Ozawa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chunwei W, Kyl S, Snehaunshu C, Guoqiang J, Lei Z, Michael RZ. Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers. Adv Funct Mater. 2012;22:78–85.

    Article  Google Scholar 

  2. Carnes LC, Klabunde KJ. The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A: Chem. 2003;194:227–36.

    Article  CAS  Google Scholar 

  3. Fujimura K, Miyake A. The effect of specific surface area of TiO2 on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2010;99:27–31.

    Article  CAS  Google Scholar 

  4. Chen L-J, Li G-S, Qi P, Li L-P. Thermal decomposition of ammonium perchlorate activated via addition of NiO nanocrystals. J Therm Anal Calorim. 2008;92:765–9.

    Article  CAS  Google Scholar 

  5. Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloys Compd. 2008;464:532–6.

  6. Yu Z, Chen L, Lu L, Yang X, Wang X. DSC/TG-MS study on in situ catalytic thermal decomposition of ammonium perchlorate over CoC2O4. Chin J Catal. 2009;30:19–23.

    Article  CAS  Google Scholar 

  7. Oelerich W, Klassen T, Bormann R. Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd. 2001;315:237–42.

    Article  CAS  Google Scholar 

  8. Prasad R. Mechanism and kinetics of thermal decomposition of ammoniacal copper oxalate chromate. J Therm Anal Calorim. 2006;85:279–84.

    Article  CAS  Google Scholar 

  9. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. Phys Chem B. 2004;108:5547–51.

    Article  CAS  Google Scholar 

  10. Kumar RV, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater. 2000;12:2301–5.

    Article  CAS  Google Scholar 

  11. Alkoy EM, Alkoy PJ, Kellym PJ. The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets. Vacuum. 2005;79:221–30.

    Article  CAS  Google Scholar 

  12. Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali PK. Response speed of SnO 2-based H2S gas sensors with CuO nanoparticles. Appl Phys Lett. 2004;84:1180–2.

    Article  CAS  Google Scholar 

  13. Cao H, Suib SL. Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts. J Am Chem Soc. 1994;116:5334–42.

    Article  CAS  Google Scholar 

  14. Seiichi S, Shogo M, Sinya S. Photo electrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. J Photochem Photobiol A Chem. 2008;194:143–7.

    Article  Google Scholar 

  15. Tang KJ, Wang XF, Yan WF. Fabrication of super hydrophilic Cu2O and CuO membranes. J Membr Sci. 2006;286:279–84.

    Article  CAS  Google Scholar 

  16. Jarlborg T. Effects of spin–phonon interaction within the CuO plane of high-TC superconductors. Phys C (Amsterdam, Neth). 2007;45:5–14.

    Article  Google Scholar 

  17. Chen LJ, Li GS, Li LP. CuO nanocrystals in thermal decomposition of ammonium perchorate stabilization, structural characterization and catalytic activities. J Therm Anal Calorim. 2008;2:581–7.

    Article  Google Scholar 

  18. Hamdani M, Koenig JF, Chartier P. Films minces de Co3O4 et NiCo2O4 obtenus par nébulisation réactive (spray) pour l’électrocatalyse. II. Etude par voltampérométrie cyclique. J Appl Electrochem. 1988;18:568–76.

    Article  CAS  Google Scholar 

  19. Athawale AA, Bapat M. A soft solution process to synthesize nanocrystalline barium zirconate via reactive solid state precursors. J Metastable Nanocryst Mater. 2005;23:3–6.

    Article  CAS  Google Scholar 

  20. Li MY, Dong WS, Liu CL, Liu Z, Lin FQ. Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires. J Cryst Growth. 2008;310:4628–34.

    Article  CAS  Google Scholar 

  21. Liu Y, Zhang X. Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim Acta. 2009;54:4180–5.

    Article  CAS  Google Scholar 

  22. Ganguli AK, Ahmad T, Arya PR, Jha P. Nanoparticles of complex metal oxides synthesized using the reverse-micellar and polymeric precursor routes. Pramana. 2005;65:937–47.

    Article  CAS  Google Scholar 

  23. Boutonnet M, Kizling J, Stenius P, Maire G. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf. 1982;5:209–25.

    Article  CAS  Google Scholar 

  24. Palkar VR, Ayyub P, Chattopadhyay S, Multani M. Size-induced structural transitions in the Cu–O and Ce–O systems. Phys Rev B. 1996;53:2167–70.

    Article  CAS  Google Scholar 

  25. Hong ZS, Cao Y, Deng JF. A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett. 2002;52:34–8.

    Article  CAS  Google Scholar 

  26. Prajakta RP, Krishnamurthy VN, Satyawati SJ. Effect of nano-copper oxide and copper chromite on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2008;33:266–70.

    Article  Google Scholar 

  27. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.

    Article  CAS  Google Scholar 

  28. Hosseini SG, Abazari R, Gavi A. Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;37:72–9.

    Article  CAS  Google Scholar 

  29. Birks LS, Friedman H. Particle size determination from X-ray broadening. J Appl Phys. 1946;17:687–92.

    Article  CAS  Google Scholar 

  30. Zhang WJ, Li P, Xu HB, Sun R, Qing P, Zhang Y. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)3·Cr(OH)3 nanoparticles. J Hazard Mater. 2014;268:273–80.

    Article  CAS  Google Scholar 

  31. Rajić M, Sućeska M. Study of Thermal decomposition kinetics of low-temperature reaction of ammonium perchlorate by isothermal TG. J Therm Anal Calorim. 2000;63:375–86.

    Google Scholar 

  32. Zhi J, Tian-Fang W, Shu-Fen L, Feng-Qi Z, Zi-Ru L, et al. Thermal behavior of ammonium perchlorate and metal powders of different grades. J Therm Anal Calorim. 2006;85:315–20.

    Article  CAS  Google Scholar 

  33. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2011;217:330–9.

    Article  Google Scholar 

  34. Wang J, He S, Li Z, Jing X, Zhang M, Jiang Z. Self-assembled CuO nanoarchitectures and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Colloid Polym Sci. 2009;287:853–8.

    Article  CAS  Google Scholar 

  35. Yang C, Wang J, Xiao F, Su X. Microwave hydrothermal disassembly for evolution from CuO dendrites to nanosheets and their applications in catalysis and photo-catalysis. Powder Technol. 2014;264:36–42.

    Article  CAS  Google Scholar 

  36. Li C, Yin Y, Hou H, Fan N, Yuan F, Shi Y, Meng Q. Preparation and characterization of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation. Solid State Commun. 2010;150:585–9.

    Article  CAS  Google Scholar 

  37. Freeman ES, Anderson DA. Effects of radiation and doping on the catalytic activity of magnesium oxide on the thermal decomposition of potassium perchlorate. Nature. 1965;206:378–9.

    Article  CAS  Google Scholar 

  38. Dubey BL, Singh NB, Srivastava JN, Ojha AK. The catalytic behavior of NiFe2-xCrxO4 (0.0 ≤ X≤2.0) during the thermal decomposition of ammonium perchlorate, polystyrene and their composite propellants. Indian J Chem. 2001;40A:841–7.

    CAS  Google Scholar 

  39. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    Article  CAS  Google Scholar 

  40. Joshi SS, Patil PR, Krishnamurthy VN. Thermal decomposition of ammonium perchlorate in the presence of nanosized ferric oxide. Def Sci J. 2008;58:721–7.

    Article  CAS  Google Scholar 

  41. Patil PR, Krishnamurthy VN, Joshi SS. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants Explos Pyrotech. 2006;31:442–6.

    Article  CAS  Google Scholar 

  42. Survase DV, Gupta M, Asthana SN. The effect of Nd2O3 on thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants. Prog Cryst Growth Charact Mater. 2002;45:161–5.

    Article  CAS  Google Scholar 

  43. Rogachev AS, Moskovskikh DO, Nepapushev AA, Sviridova TA, Vadchenko SG, Rogachev SA, Mukasyan AS. Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures. Powder Technol. 2015;274:44–52.

    Article  CAS  Google Scholar 

  44. Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat. 2009;65:269–74.

    Article  CAS  Google Scholar 

  45. Eslami A, Hosseini SG. Improving safety performance of lactose-fueled binary pyrotechnic systems of smoke dyes. J Therm Anal Calorim. 2011;104:671–8.

    Article  CAS  Google Scholar 

  46. Eslami A, Hosseini SG, Pourmortazavi SM. Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems. Fuel. 2008;87:3339–43.

    Article  CAS  Google Scholar 

  47. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  48. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  49. ASTM E698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials. doi:10.1520/E0698-05.

  50. Hosseini SG, Eslami A. Investigation on the reaction of powdered tin as a metallic fuel with some pyrotechnic oxidizers. Propellant Explos Pyrotech. 2011;36:175–81.

    Article  CAS  Google Scholar 

  51. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, et al. TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77:803–13.

    Article  CAS  Google Scholar 

  52. Hosseini SG, Eslami A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim. 2010;101:1111–9.

    Article  CAS  Google Scholar 

  53. Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2012;113:721–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ghorban Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoman, E., Hosseini, S.G. Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim 123, 1213–1224 (2016). https://doi.org/10.1007/s10973-015-5059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5059-1

Keywords

Navigation