Skip to main content
Log in

Visible-light photocatalytic degradation of ethidium bromide using carbon- and iron-modified TiO2 photocatalyst

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanosized TiO2 as well as carbon (C) and C, Fe co-doped TiO2 were synthesized using reverse microemulsion method. Thermal stability of precursor was studied using thermogravimetry and differential thermal analysis techniques. Heat-treated powders were characterized using Fourier transform infrared spectrophotometer, X-ray diffractometer, scanning electron microscope, transmission electron microscope and energy-dispersive X-ray spectroscope. Visible-light photocatalytic degradation of aqueous solution of ethidium bromide (EtBr) was investigated using C, Fe co-doped TiO2 photocatalyst. UV–visible spectrophotometer and high-pressure liquid chromatography techniques were used to analyze the concentration of EtBr during the degradation process. Various parameters affecting the photocatalytic activity of photocatalyst are studied. C-doped TiO2 acts as photosensitizer and helps to extend the light absorption wavelength of C-doped TiO2.·Fe co-doping introduces new energy levels of the transition metal ions between the band gap of TiO2 and further extends absorption wavelength in visible region. The synergistic effects of C- and Fe-modified TiO2 nanoparticles were responsible for improving visible-light photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dvortsov IA, Lunina NA, Chekanovskaya LA, Shedova EN, Gening LV, Velikodvorskaya GA. Ethidium bromide is good not only for staining of nucleic acids but also for staining of proteins after polyacrylamide gel soaking in trichloroacetic acid solution. Anal Biochem. 2006;353:293–5.

    Article  CAS  Google Scholar 

  2. Lunn G, Sansone EB. Ethidium bromide: destruction and decontamination of solution. Anal Biochem. 1987;162:453–8.

    Article  CAS  Google Scholar 

  3. Ohta T, Tokishita S, Yamagata H. Ethidium bromide and SYBR green I enhance the genotoxicity of UV-irradiation and chemical mutagens in E. coli. Mutat Res. 2001;492:91–7.

    Article  CAS  Google Scholar 

  4. Morales-Flores N, Pal U, Mora ES. Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Appl Catal A Gen. 2011;394:269–75.

    Article  CAS  Google Scholar 

  5. Ryu YB, Jung WY, Lee MS, Jeong ED, Kim HG, Yang JS, Lee G-D, Park SS, Hong S-S. Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using basic additive and their photocatalytic activity on the decomposition of orange II. J Phys Chem Solids. 2008;69:1457–60.

    Article  CAS  Google Scholar 

  6. Zhang Z, Wang C-C, Zakaria R, Ying JY. Role of nanoparticle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B. 1998;102:10871.

    Article  CAS  Google Scholar 

  7. Mitsionis A, Vaimakis T. The effect of thermal treatment in TiO2 photocatalytic activity. J Therm Anal Calorim. 2013;112:621–8.

    Article  CAS  Google Scholar 

  8. Mahlambi M, Mishra A, Mishra S, Krawe R, Mamba B, Raichur A. Comparison of rhodamine B degradation under UV irradiation by two phase of titania nano-photocatalyst. J Therm Anal Calorim. 2012;110:847–55.

    Article  CAS  Google Scholar 

  9. Pulisova P, Vecernikova E, Marikova M, Balek V, Bohacek J, Subrt J. Thermal analysis methods in the characterization of photocatalytic titania precursors. J Therm Anal Calorim. 2012;108:489–92.

    Article  CAS  Google Scholar 

  10. Balek V, Subrt J, Bounsteva IM, Irie H, Hashimoto K. Emanation thermal analysis study of N-doped titania photoactive powders. J Therm Anal Calorim. 2008;92:161–7.

    Article  CAS  Google Scholar 

  11. Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek J, Jirkovsky K, Petrova N. Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J Mater Chem. 2006;16:1709–16.

    Article  CAS  Google Scholar 

  12. Venkatachalam N, Palanichamy M, Murugesan V. Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A Chem. 2007;273:177–85.

    Article  CAS  Google Scholar 

  13. Wang X, Li J, Kamiyama H, Moriyoshi Y, Ishigaki T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (III)-doped TiO2 nanopowders under UV and visible light irradiation. J Phys Chem B. 2006;110:6804–9.

    Article  CAS  Google Scholar 

  14. Yu J, Zhou M, Cheng B, Zhao X. Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. J Mol Catal A Chem. 2006;246:176–84.

    Article  CAS  Google Scholar 

  15. Yu JC, Ho W, Yu JG, Yip H, Wong P, Zhao J. Efficient visible-light induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol. 2005;39:1175–9.

    Article  CAS  Google Scholar 

  16. Li D, Haneda H, Labhsetwar N, Hishita S, Ohashi N. Visible-light-driven photocatalytic activity of fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem Phys Lett. 2005;401:579–84.

    Article  CAS  Google Scholar 

  17. Burda C, Lou Y, Chen X, Samia A, Stout J, Gole J. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 2003;3:1049–51.

    Article  CAS  Google Scholar 

  18. Reddy B, Sreekanth P, Reddy E, Yamada Y, Xu Q, Sakurai H, Kobayashi T. Surface characterization of La2O3–TiO2 and V2O5/La2O3–TiO2 catalysts. J Phys Chem B. 2002;106:5695–700.

    Article  CAS  Google Scholar 

  19. Lavand AB, Malghe YS. Nano sized C doped TiO2 as a visible light photocatalyst for the degradation of 2,4,6-trichlorophenol. Adv Mater Lett. 2015. doi:10.5185/amlett.2015.5800.

    Google Scholar 

  20. Wang C, Bottcher C, Bahnemann D, Dohrmann J. A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalyst: synthesis, characterization and activity. J Mater Chem. 2003;13:2322–9.

    Article  CAS  Google Scholar 

  21. Zhu J, Zheng W, He B, Zhang J, Anpo M. Characterization of Fe–TiO2 photocatalyst synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem. 2004;2004(216):35–43.

    Article  Google Scholar 

  22. Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys Rev B. 1972;5:3144–51.

    Article  Google Scholar 

  23. Lavand AB, Malghe YS. Synthesis, characterization, and visible light photocatalytic activity of nanosized carbon doped zinc oxide. Int J Photochem. 2015;2015:790153.

    Article  Google Scholar 

  24. Lavand AB, Malghe YS. Synthesis of nanosized BaZrO3 from oxalate precursor. J Therm Anal Calorim. 2014;118:1613–8.

    Article  CAS  Google Scholar 

  25. Malghe YS, Yadav UC. Synthesis, characterization and investigation of dielectric properties of nanosized SrZrO3. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4804-9.

    Google Scholar 

  26. Wu Y, Zhang J, Xiao L, Chen F. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl Surf Sci. 2010;256:4260–8.

    Article  CAS  Google Scholar 

  27. Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ. 2009;91:355–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author Lavand A. B. is thankful to UGC, New Delhi, India, for providing BSR fellowship. Authors are also thankful to Sophisticated Analytical Instrument Laboratory (SAIF) IIT, Mumbai, India, for availing FE-SEM and TEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuvraj S. Malghe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavand, A.B., Malghe, Y.S. Visible-light photocatalytic degradation of ethidium bromide using carbon- and iron-modified TiO2 photocatalyst. J Therm Anal Calorim 123, 1163–1172 (2016). https://doi.org/10.1007/s10973-015-5041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5041-y

Keywords

Navigation