Skip to main content
Log in

Thermal decomposition kinetics of poly(3,3′-bisazidomethyl oxetane-3-azidomethyl-3′-methyl oxetane)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(3,3′-bisazidomethyl oxetane-3-azidomethyl-3′-methyl oxetane) [P(BAMO/AMMO)] energetic thermoplastic elastomer (ETPE) is one of the most promising binders for the propellant and explosive formulations. It is synthesized with different content of hard segment and molar ratio of PBAMO and PAMMO. The results of mechanical test show that with higher content of hard segment and larger content of PBAMO, the ETPEs obtain higher tensile strength and lower breaking elongation. The thermal kinetics of the first decomposition stage of P(BAMO/AMMO) is investigated and the calculated apparent activation energy (E a) is about 169 kJ mol−1 by multi-heating rate method. In the single-heating rate study, f(α) = 1 − α is found to be the most probable mechanism function. Kinetic compensation effects are studied for the validation of the most probable mechanism function, and the results show that f(α) = 1 − α is quite suitable at a lower extent of conversion (α), but \( f(\alpha ) = \frac{2}{3}\left( {1 - a} \right)\left[ { - { \ln }\left( {1 - a} \right)} \right]^{{ - \frac{1}{2}}} \) is more fit when α is larger.

Graphical Abstract

P(BAMO/AMMO) ETPE was prepared, and the thermal decomposition kinetic of the first decomposition stage (mainly the thermal decomposition of –N3 group) was investigated. f(α) = 1 − α was a fitting mechanism function at a lower α, and \( f(\alpha ) = \frac{2}{3}(1 - a)[ - \ln (1 - a)]^{{ - \frac{1}{2}}} \) was more suitable when α was higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kanti Sikder A, Reddy S. Review on energetic thermoplastic elastomers (ETPEs) for military science. Propellants, Explos, Pyrotech. 2013;38(1):14–28.

    Article  CAS  Google Scholar 

  2. Ampleman G, Brousseau P, Thiboutot S, Rocheleau S, Monteil-Rivera F, Radovic-Hrapovic Z, et al. Evaluation of GIM as a greener insensitive melt-cast explosive. Int J Energ Mater Chem Propuls. 2012;11(1):59–87. doi:10.1615/IntJEnergeticMaterialsChemProp.005265.

    CAS  Google Scholar 

  3. Kucukpinar RE, Kalyon DM, editors. Viscoelasticity and processability of a BAMO/AMMO thermoplastic elastomer. In: Proceedings of the 1997 55th annual technical conference, ANTEC. Part 3(3), April 27, 1997–May 2, 1997; 1997; Toronto, Can: Soc of Plastics Engineers.

  4. Reddy TS, Nair JK, Satpute RS, Gore GM, Sikder AK. Rheological studies on energetic thermoplastic elastomers. J Appl Polym Sci. 2010;118(4):2365–8. doi:10.1002/app.32182.

    CAS  Google Scholar 

  5. Luo YJ, Wang XQ, Ge Z. Energetic polymers. Beijing: Academic Press; 2011.

    Google Scholar 

  6. De Oliveira JIS, Diniz MF, Kawamoto AM, Dutra RCL, Keicher T. MIR/NIR/FIR characterization of poly-AMMO and poly-BAMO and their precursors as energetic binders to be used in solid propellants. Propellants, Explos, Pyrotech. 2006;31(5):395–400. doi:10.1002/prep.200600054.

    Article  CAS  Google Scholar 

  7. Barbieri U, Polacco G, Paesano E, Massimi R. Low risk synthesis of energetic poly(3-azidomethyl-3-methyl oxetane) from tosylated precursors. Propellants, Explos, Pyrotech. 2006;31(5):369–75.

    Article  CAS  Google Scholar 

  8. Cheradame H, Andreolety JP, Rousset E. Synthesis of polymers containing pseudohalide groups by cationic polymerization, 1. Homopolymerization of 3,3-bis(azidomethyl)oxetane and its copolymerization with 3-chloromethyl-3-(2,5,8-trioxadecyl)oxetane. Macromol Chem Phys. 1991;192(4):901–18.

    Article  CAS  Google Scholar 

  9. Kimura E, Oyumi Y. Thermal decomposition of BAMO copolymers. Propellants, Explos, Pyrotech. 1995;20(6):322–6. doi:10.1002/prep.19950200607.

    Article  CAS  Google Scholar 

  10. Lee YJ, Litzinger TA. Thermal decomposition of BAMO/AMMO with and without TiO2. Thermochim Acta. 2002;384(1–2):121–35. doi:10.1016/s0040-6031(01)00785-7.

    Article  CAS  Google Scholar 

  11. Singh G, Felix SP, Soni P. Studies on energetic compounds: part 31. Thermolysis and kinetics of RDX and some of its plastic bonded explosives. Thermochim Acta. 2005;426(1–2):131–9.

    Article  CAS  Google Scholar 

  12. You JS, Kang SC, Kweon SK, Kim HL, Ahn YH, Noh ST. Thermal decomposition kinetics of GAP ETPE/RDX-based solid propellant. Thermochim Acta. 2012;537:51–6.

    Article  CAS  Google Scholar 

  13. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6. doi:10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  14. Jimenez A, Berenguer V, Lopez J, Sanchez A. Thermal-degradation study of poly(vinyl chloride)—kinetic-analysis of thermogravimetric data. J Appl Polym Sci. 1993;50(9):1565–73. doi:10.1002/app.1993.070500910.

    Article  CAS  Google Scholar 

  15. Škvára F, Šesták J. Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method. J Therm Anal Calorim. 1975;8(3):477–89. doi:10.1007/BF01910127.

    Article  Google Scholar 

  16. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  17. Vlase T, Jurca G, Doca N. The effect of the support by the thermal decomposition of some catalyst precursors. Thermochim Acta. 2001;379(1–2):59–63.

    Article  CAS  Google Scholar 

  18. Brill TB, Gongwer PE, Williams GK. Thermal decomposition of energetic materials. 66. Kinetic compensation effects in HMX, RDX, and NTO. J Phys Chem. 1994;98(47):12242–7. doi:10.1021/j100098a020.

    Article  CAS  Google Scholar 

  19. Pisharath S, Ang HG. Synthesis and thermal decomposition of GAP—poly(BAMO) copolymer. Polym Degrad Stab. 2007;92(7):1365–77.

    Article  CAS  Google Scholar 

  20. Zhang C, Li J, Luo YJ, Li XM, Ge Z. Synthesis and structure characterization of 3,3′-bisazidomethyloxetane-3-azidomethyl-3~-methyloxetane random copolymer. Chem J Chin Univ. 2011;32(11):2685–90.

    CAS  Google Scholar 

  21. Nair JK, Reddy TS, Satpute RS, Mukundan T, Asthana SN. Synthesis and characterization of energetic thermoplastic elastomers (ETPEs) based on 3,3-bis(azidomethyl)oxetane(BAMO)-3-azidomethyl-3-methyloxetane (AMMO) copolymers. J Polym Mater. 2004;21(2):205–12.

    CAS  Google Scholar 

  22. Zhang C, Luo YJ, Li XM. Synthesis, characterization and thermal decomposition kinetics of BAMO/AMMO tri-block copolymer. Chin J Explos Propellants. 2010;33(06):11–5.

    CAS  Google Scholar 

  23. Wang G, Ge Z, Luo YJ. Effect of several burning rate catalysts on the thermal decomposition properties of P(BAMO/AMMO) energetic binder. Chin J Energ Mater. 2014;22(05):641–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Ge, Z. & Luo, Y. Thermal decomposition kinetics of poly(3,3′-bisazidomethyl oxetane-3-azidomethyl-3′-methyl oxetane). J Therm Anal Calorim 122, 1515–1523 (2015). https://doi.org/10.1007/s10973-015-4876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4876-6

Keywords

Navigation