Skip to main content
Log in

Synthesis of tris(phenoxy)trifluorocyclotriphosphazenes and study of its effects on the flammable, thermal, optical, and mechanical properties of bisphenol-A polycarbonate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A flame-retardant tris(phenoxy)trifluorocyclotriphosphazenes, 2,4,6-N3P3(OPh)3F3 (TCTP) containing phenoxyl, fluorine, and cyclotriphosphazene ring was synthesized from hexachlorocyclotriphosphazene and added to polycarbonate (PC) to improve flame retardancy. Its chemical structure was confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance. The synthesis of TCTP was designed to improve the flame retardancy of PC without harming PC excellent optical and mechanical performances. The flame retardancy and thermal degradation behavior of PC/TCTP composites were investigated with the limiting oxygen index (LOI), UL-94 vertical burning test, microscale combustion calorimeter, thermogravimetric analysis, and differential scanning calorimetry. Scanning electron microscopy (SEM) analyses and FTIR spectrophotometer were brought together to study the structure of residual char. The optical and mechanical properties of PC were also taken into consideration at the same time. When 10 % TCTP was incorporated, the LOI of composite achieved the maximum of 40 %, and class V-0 of UL-94 test was passed. The phenomena of SEM and FTIR stated that there was interaction between PC and TCTP to form new stable film in mid of residual char. Light transmittance, tensile, and flexural strength of PC/TCTP systems were improved at different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Levchik SV, Weil ED. Flame retardants in commercial use or in advanced development in polycarbonates and polycarbonate blends. J Fire Sci. 2006;24(2):137–51.

    Article  CAS  Google Scholar 

  2. Olabisi O, Kolapo A (editors). Handbook of thermoplastics [M]. Chemical rubber company press; 1997. Vol. 41.

  3. Levchik SV, Weil ED. Overview of recent developments in the flame retardancy of polycarbonates. Polym Int. 2005;54(7):981–98.

    Article  CAS  Google Scholar 

  4. Feng J, Hao J, Du J, Yang R. Flame retardancy and thermal properties of solid bisphenol A bis (diphenyl phosphate) combined with montmorillonite in polycarbonate. Polym Degrad Stab. 2010;95(10):2041–8.

    Article  CAS  Google Scholar 

  5. Liu S, Ye H, Zhou Y, et al. Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TG and FTIR. Polym Degrad Stab. 2006;91(8):1808–14.

    Article  CAS  Google Scholar 

  6. Wang YZ, Yi B, Wu B, et al. Thermal behaviors of flame-retardant polycarbonates containing diphenylsulfonate and poly (sulfonylphenylene phosphonate). J Appl Polym Sci. 2003;89(4):882–9.

    Article  CAS  Google Scholar 

  7. Singler RE, Hagnauer GL, Schneider NS, et al. Synthesis and characterization of polyaryloxyphosphazenes. J Polym Sci. 1974;12(2):433–44.

    CAS  Google Scholar 

  8. Wisian-Neilson P, Allcock HR, Wynne KJ. Inorganic and organometallic polymers II: advanced materials and intermediates: developed from a symposium sponsored by the Division of Polymer Chemistry, Inc., at the 205th National Meeting of the American Chemical Society, Denver, Colorado, March 28–April 2, 1993. ACS, 1994.

  9. Kumar D, Fohlen GM, Parker JA. The curing of epoxy resins with aminophenoxycyclotriphosphazenes. J Polym Sci Part A. 1986;24(10):2415–24.

    Article  CAS  Google Scholar 

  10. Kumar D, Khullar M, Gupta AD. Synthesis and characterization of novel cyclotriphosphazene-containing poly (ether imide)s. Polymer. 1993;34(14):3025–9.

    Article  CAS  Google Scholar 

  11. Zhang T, Cai Q, Wu DZ, et al. Phosphazene cyclomatrix network polymers: some aspects of the synthesis, characterization, and flame-retardant mechanisms of polymer. J Appl Polym Sci. 2005;95(4):880–9.

    Article  CAS  Google Scholar 

  12. Çoşut B, Hacıvelioğlu F, Durmuş M, et al. The synthesis, thermal and photophysical properties of phenoxycyclotriphosphazenyl-substituted cyclic and polymeric phosphazenes. Polyhedron. 2009;28(12):2510–6.

    Article  Google Scholar 

  13. Weil ED. Encyclopedia of polymer science and technology, vol. 11. New York: Wiley Interscience; 1986.

    Google Scholar 

  14. Aronson AM. Phosphorous Chemistry[C]//ACS Symposium. 1992, 486: 218.

  15. Kourtides DA. Thermochemical and flammability properties of some thermoplastic and thermoset polymersa review. Polym Plast Technol Eng. 1978;11(2):159–98.

    Article  CAS  Google Scholar 

  16. Calleman CJ, Bergmark E, Costa LG. Acrylamide is metabolized to glycidamide in the rat: evidence from hemoglobin adduct formation. Chem Res Toxicol. 1990;3(5):406–12.

    Article  CAS  Google Scholar 

  17. Levchik SV, Camino G, Costa L, et al. Mechanism of action of phosphorus -based flame retardants in nylon 6. I. Ammonium polyphosphate. Fire Mater. 1995;19(1):1–10.

    Article  CAS  Google Scholar 

  18. Potin P, De Jaeger R. Polyphosphazenes: synthesis, structures, properties, applications. Eur Polym J. 1991;27(4):341–8.

    Article  CAS  Google Scholar 

  19. Levchik SV. Introduction to flame retardancy and polymer flammability. NJ: Wiley; 2007.

    Book  Google Scholar 

  20. Kumar D, Fohlen GM, Parker JA. Fire-and heat-resistant laminating resins based on maleimido-substituted aromatic cyclotriphosphazenes. Macromolecules. 1983;16(8):1250–7.

    Article  CAS  Google Scholar 

  21. Kannan P, Kishore K. Polyethylene stibinite phosphate esters: novel flame-retardant plasticizers for PVC. Eur Polym J. 1997;33(10):1799–803.

    Article  CAS  Google Scholar 

  22. Annakutty KS, Kishore K. Flame retardant polyphosphate esters: 1. condensation polymers of bisphenols with aryl phosphorodichloridates: synthesis, characterization and thermal studies [J]. Polymer. 1988;29(4):756–61.

    Article  CAS  Google Scholar 

  23. Kannan P, Kishore K. Novel flame retardant polyphosphoramide esters. Polymer. 1992;33(2):418–22.

    Article  CAS  Google Scholar 

  24. Pawlowski KH, Schartel B. Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrileebutadienee styrene blends. Polym Degrad Stab. 2008;93(3):657–67.

    Article  CAS  Google Scholar 

  25. Allen CW, Tsang FY, Moeller T. Aryl-substituted phosphonitrilic fluorides. III. Geminally substituted phenylphosphonitrilic fluoride trimers. Inorg Chem. 1968;7(11):2183–8.

    Article  CAS  Google Scholar 

  26. Babushok VI, Tsang W. Kinetic modeling of heptane combustion and PAH formation. J Propuls Power. 2004;20(3):403–14.

    Article  CAS  Google Scholar 

  27. Li L, Li X, Yang R. Mechanical, thermal properties, and flame retardancy of PC/ultrafine octaphenyl-POSS composites. J Appl Polym Sci. 2012;124(5):3807–14.

    Article  CAS  Google Scholar 

  28. Wang Jiangbo, Xin Zhong. Flame retardancy, thermal, rheological, and mechanical properties of polycarbonate/polysilsesquioxane system. J Appl Polym Sci. 2010;115(1):330–7.

    Article  CAS  Google Scholar 

  29. Lyon RE, Walters RN. Pyrolysis combustion flow calorimetry. J Anal Appl Pyrolysis. 2004;71(1):27–46.

    Article  CAS  Google Scholar 

  30. Lyon RE, Walters R. A microscale combustion calorimeter. Federal aviation administration Washington DC office of aviation research, 2002.

  31. Lyon RE, Walters RN, Stoliarov SI. A thermal analysis method for measuring polymer flammability. J ASTM Int. 2006;3(4):1–18.

    Article  Google Scholar 

  32. Lyon RE, Walters RN. Microscale combustion calorimeter, US Patent5, 981, 290, November 9 (1999).

  33. ASTM D 7309-13, Standard test method for determining flammability characteristics of plastics and other solid materials using microscale combustion calorimetry. American Society for Testing and Materials, Developed by Subcommittee: D20.30.

  34. Schartel B, Pawlowski KH, Lyon RE. Pyrolysis combustion flow calorimeter: a tool to assess flame retarded PC/ABS materials? Thermochim Acta. 2007;462(1):1–14.

    Article  CAS  Google Scholar 

  35. Tang Z, Li Y, Zhang YJ, et al. Oligomeric siloxane containing triphenyl phosphonium phosphate as a novel flame retardant for polycarbonate. Polym Degrad Stab. 2012;97(4):638–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the generous supports by the following: Dr. Tiannan Zhou; the Experiment Center of Polymer Science and Engineering Academy, Sichuan University; Xinhui Science and Technology co., Ltd; National Natural Science Foundation of China, Grant No. 50973066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufu Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Kong, W., Wang, Y. et al. Synthesis of tris(phenoxy)trifluorocyclotriphosphazenes and study of its effects on the flammable, thermal, optical, and mechanical properties of bisphenol-A polycarbonate. J Therm Anal Calorim 122, 805–816 (2015). https://doi.org/10.1007/s10973-015-4737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4737-3

Keywords

Navigation