Skip to main content
Log in

Calorimetric study and stability of Y202 phase in the Y–Ba–Cu–O system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermodynamic stability of Y202 phase has been studied at room temperature. For this reason, we have measured the standard formation enthalpy and enthalpy from binary oxides of yttrium cuprate by solution calorimetry combining solution enthalpies of Y2Cu2O5 and Y2O3 + 2CuO mixture in 6 M HCl at 323.15 K and literature data. Also Y2Cu2O5 heat capacity has been obtained by adiabatic calorimetry in the temperature range of 8–303 K. Smoothed values of heat capacities, entropies, and enthalpies have been calculated on the basis of experimental data. Basing on the measured data, the Gibbs free energy for decomposing yttrium cuprate into binary oxides has been calculated at room temperature. It has been established that Y202 phase is thermodynamically unstable with respect to its decomposition into binary oxides at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Caneiro A, Prado F, Serquis A. Physical properties of non-stoichiometric oxides. J Therm Anal Calorim. 2006;83:507–18.

    Article  CAS  Google Scholar 

  2. Knafo W, Meingast C, Inaba A, Wolf Th, Löhneysen H. Heat capacity and magnetic phase diagram of the low-dimensional antiferromagnet. J Phys. 2008;20:335208–14.

    Google Scholar 

  3. Sestak J, Lipavsky P. On the chronicle of high-T c oxide superconductors. J Therm Anal Calorim. 2003;74:365–73.

    Article  CAS  Google Scholar 

  4. Chadzynski GW, Staszczuk P, Sternik D, Blachnio M. Studies of physico-chemical properties and fractal dimensions of selected high-temperature superconductor surfaces. J Therm Anal Calorim. 2008;94:623–6.

    Article  CAS  Google Scholar 

  5. Chong T, Kambe S, Kawaji H, Atake T, Ishii O. Heat capacity of GdBaSr(Cu3−x M x )O7−δ superconductor (M = Zn and Ni). J Therm Anal Calorim. 2008;92:425–9.

    Article  CAS  Google Scholar 

  6. Matskevich NI, McCallum RW. The 1:2:3-phases in the Y(Ho, Gd, Nd)-Ba-Cu-O: calorimetric investigations, correlations between thermodynamic and structural properties. Thermochim Acta. 1999;342:41–6.

    Article  CAS  Google Scholar 

  7. Dedman J, Wimbush SC, Hall SR. Biopolymer mediated sol-gel synthesis of LuBa2Cu 3O7-δ . Phys C. 2010;470:S237–8.

    Article  CAS  Google Scholar 

  8. Lee HK. Effect of oxygen partial pressure on phase formation and stability of LuBa2Cu3O7−x compounds. J Supercond Nov Magn. 2012;25:2519–22.

    Article  CAS  Google Scholar 

  9. Zhou Z, Navrotsky A. Thermochemistry of the Y2O3-BaO-Cu-O system. J Mater Res. 1992;7:2922–35.

    Article  Google Scholar 

  10. Monaenkova AS, Popova AA, Tiflova LA, Gudilin EA. The formation enthalpies of substitution solid solutions Pr1+x Ba2−x Cu3O(y). Russ J Phys Chem A. 2009;83:1280–4.

    Article  CAS  Google Scholar 

  11. Wiesner U, Krabbes G, Ritschel M. Stability fields in the system Y-Cu-O and thermochemical data of Y2Cu2O5 and YCuO2. Mater Res Bull. 1990;24:1261–6.

    Article  Google Scholar 

  12. Kazin PE, Tretyakov YuD, Lennikov VV, Jansen M. Formation of the Bi2Sr2CaCu2O8 + δ superconductor with Mg1 − x Cu x O inclusions: the phases compatibility and the effect of the preparation route on the material microstructure and properties. J Mater Chem. 2001;11:168–71.

    Article  CAS  Google Scholar 

  13. Gegterev SA, Rudnyi EB, Voronin GF. Thermodynamic modeling of superconducting phases in the yttrium–barium–copper–oxygen system. Phys C. 2007;454:70–6.

    Article  Google Scholar 

  14. Gavrichev KS, Gorbunov VE, Golushina LN, Lazarev VB, Nikiforova GE, Vedernikov NF, Totrova GA, Shaplyigin IS. Heat capacity of Y2Cu2O5 in the field of low temperatures (5-335 K). Russ J Inorg Chem. 1992;37:1583–5.

    CAS  Google Scholar 

  15. Monaenkova AS, Popova AA, Tiflova LA, Kovba ML. The enthalpies of formation of Sm1+x Ba2−x Cu3O(y) substitution solid solutions. Russ J Phys Chem A. 2010;84:1085–8.

    Article  CAS  Google Scholar 

  16. Tretyakov YuD, Kaul AR, Makukhin NV. An electrochemical study of high-temperature stability of compounds between the rare earths and copper oxide. J Solid State Chem. 1976;17:183–9.

    Article  CAS  Google Scholar 

  17. Matskevich NI, Wolf Th. Synthesis and physico-chemical properties of phase-pure ceramic LuBa2Cu3O7−δ . Thermochim Acta. 2008;467:113–6.

    Article  CAS  Google Scholar 

  18. Vassilev GP. Interactions between YBa2Cu3O7−x and K2CO3. Cryst Res Technol. 1995;30:1155–64.

    Article  CAS  Google Scholar 

  19. Sharpataya GA, Fedoseev AD, Nikiforova GE. Heat capacity of double oxide Y2Cu2O5 in interval 300-1070 K. Russ J Inorg Mater. 1993;29:1694–5.

    CAS  Google Scholar 

  20. Matskevich NI, Wolf Th. Formation enthalpies and thermodynamic stability of the Sm1+x Ba2−x Cu3O y solid solutions. Thermochim Acta. 2004;421:231–3.

    Article  CAS  Google Scholar 

  21. Matskevich NI, Kuznetsov FA, Feil D, Range KJ. Synthesis and thermodynamic characteristics of LaSrNiO4. Thermochim Acta. 1998;319:1–5.

    Article  CAS  Google Scholar 

  22. Nazzal AI, Lee VY, Engler EM, Jacowitz RD, Tokura Y, Torrance JB. New procedure for determination of [Cu-O]+p charge and oxygen content in high Tc copper oxides. Phys C. 1988;153–155:1367–8.

    Article  Google Scholar 

  23. Matskevich NI, McCallum RW. The 1: 2: 3 phases in the Y(Ho, Gd, Nd)-Ba-Cu-O: calorimetric investigations, correlations between thermodynamic and structural properties. Thermochim Acta. 1999;342:41–6.

    Article  CAS  Google Scholar 

  24. Matskevich NI. Enthalpy of formation of BaCe0.9In0.1O3−d (s). J Therm Anal Calorim. 2007;90:955–8.

    Article  CAS  Google Scholar 

  25. Matskevich NI, Wolf Th. The enthalpies of formation of BaCe1−x RE x O3-delta (RE = Eu, Tb, Gd). J Chem Thermodyn. 2010;42:225–8.

    Article  CAS  Google Scholar 

  26. Glushko VP. Termicheskie Konstanty Veshchestv (Thermal constants of substances). Moscow: VINITI; 1965–1982 (issued 1–10).

  27. Gunter C, Pfestorf R, Rother M, Seidel J, Zimmermann R, Wolf G, Schroder V. An interlaboratory test for the certification of potassium chloride as a certified reference material (CRM) for solution calorimetry. J Therm Anal Calorim. 1988;33:359–63.

    Article  Google Scholar 

  28. Minenkov YuF, Matskevich NI, Stenin YuG, Samoilov PP. Heat capacities and thermodynamic functions of BaCuO2 in the temperature range of 8-305 K. Thermochim Acta. 1996;278:1–8.

    Article  CAS  Google Scholar 

  29. Vasiliev IV, Matskevich NI. Heat equivalent of calorimeters with automatically operated adiabatic jacket. Russ J Phys Chem. 1988;62:3180–5.

    Google Scholar 

  30. Westrum EF, Hatcher JB, Osborn DW. The entropy and low temperature heat capacity of neptunium dioxide. J Chem Phys. 1953;21:419–25.

    Article  CAS  Google Scholar 

  31. Fink HL. New standards dismissed at conference on low temperature calorimetry. Chem Eng News. 1949;27:2772.

  32. Van Oort MJ, White MA. Automated, small sample-size adiabatic calorimeter. Rev Sci Instrum. 1987;58:1239–43.

    Article  Google Scholar 

  33. Matskevich NI, Semenova ZI. Phase transformations in the system Cr–Si–W–O. J Alloys Compd. 2011;509:6146–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was particularly supported by the Russian Fund of Basic Research (Project 13-08-00169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Matskevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskevich, N.I., Minenkov, Y.F. & Berezovskii, G.A. Calorimetric study and stability of Y202 phase in the Y–Ba–Cu–O system. J Therm Anal Calorim 121, 771–776 (2015). https://doi.org/10.1007/s10973-015-4599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4599-8

Keywords

Navigation