Skip to main content
Log in

Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetric analysis is one of the most common instrumental techniques used for the characterization of pastes, mortars and concretes based on both calcium hydroxide and Portland cement. Important information about pozzolanic materials can be assessed concerning calcium hydroxide consumption and the formation of new hydrated products. Nevertheless, in some cases, problems associated with the overlapped decomposition processes for hydrates make the analysis of obtained data difficult. In this paper, the use of high-resolution thermogravimetric analysis, a powerful technique that allows separating decomposition processes in analysis of hydrated binders, was performed for spent FCC catalyst—Portland cement pastes. These pastes were monitored for 1, 4, 8 h and 1, 2, 3, 7 and 28 curing days. In order to study the influence of the pozzolanic material (spent FCC catalyst), Portland cement replacements of 5, 15 and 30 % by mass were carried out. The presence of spent FCC catalyst in blended pastes modified the amount and the nature of the formed hydrates, mainly ettringite and stratlingite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haines PJ. Thermal Methods of Analysis. London: Blackie Academic Professional; 1995.

    Book  Google Scholar 

  2. Ramachandran VS. Applications of differential thermal analysis in cement chemistry. Revere: Chemical Publishing Company; 1969.

    Google Scholar 

  3. Dweck J, Büchler PM, Coelho ACV, Cartledge FK. Hydration of cement blended with calcium carbonate. Thermochim Acta. 2000;346:10–113.

    Google Scholar 

  4. Bhatty JI. A review of the application of thermal analysis to cement-admixtures systems. Thermochim Acta. 1991;189:313–50.

    Article  CAS  Google Scholar 

  5. Frías M, Vigil R, García R, Rodríguez O, Goñi S, Vegas I. Evolution of mineralogical phases produced during the pozzolanic reaction of different metakoalinite by-products: influence of the activation process. Appl Clay Sci. 2012;56:42–52.

    Article  Google Scholar 

  6. Lin YH, Adebajo MO, Frost RL, Kloprogge JT. Thermogravimetric analysis of hydrotalcites based on the takovite formula NixZn6−xAl2(OH)16(CO3)·4H2O. J Therm Anal Calorim. 2005;81:83–9.

    Article  CAS  Google Scholar 

  7. Zhu J, Yuan P, He H, Frost RL, Tao Q, Shen W, Bostrom T. In situ synthesis of surfactant/silane-modified hydrotalcites. J Colloid Interface Sci. 2008;319:498–504.

    Article  CAS  Google Scholar 

  8. Xi Y, Ding Z, He H, Frost RL. Structure of organoclays-an X-ray diffraction and thermogravimetric analysis study. J Colloid Interface Sci. 2004;277:116–20.

    Article  CAS  Google Scholar 

  9. He H, Yang D, Yuan P, Shen W, Frost RL. A novel organoclay with antibacterial activity prepared from montmorillonite and Chlorhexidini Acetas. J Colloid Interface Sci. 2006;297:235–43.

    Article  CAS  Google Scholar 

  10. Frost RL, Mills SJ, Erickson KL. Thermal decomposition of peisleyite: a thermogravimetry and hot stage Raman spectroscopic study. Thermochim Acta. 2004;419:109–14.

    Article  CAS  Google Scholar 

  11. Yang D, Yuan P, Zhu JX, He HP. Synthesis and characterization of antibacterial compounds using montmorillonite and chlorhexidine acetate. J Therm Anal Calorim. 2007;89:847–52.

    Article  CAS  Google Scholar 

  12. Levchik SV, Ivanshkevich OA, Costa L, Gaponik PN, Andreeva TN. Thermal decomposition of tetrazole-containing polymers. IV: poly-1-vinyl-5-methyltetrazole and poly-1-vinyl-5-phenyltetrazole. Polym Degrad Stab. 1994;46:225–34.

    Article  CAS  Google Scholar 

  13. Berkovich AJ, Young BR, Levy JH, Schmindt SJ, Ray A. Thermal characterisation of Australian oil shales. J Therm Anal Calorim. 1997;49:737–43.

    Article  CAS  Google Scholar 

  14. Borrachero MV, Payá J, Bonilla M, Monzó J. The use of thermogravimetric análisis technique for the characterization of construction materials. J Therm Anal Calorim. 2008;91:503–9.

    Article  CAS  Google Scholar 

  15. Payá J, Borrachero MV, Monzó J. The use of MaxRes for the investigation of partially hydration Portland cement systems. User Comput. 2000;11:15–7.

    Google Scholar 

  16. Tobón JI, Payá J, Borrachero MV, Soriano L, Restrepo OJ. Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. J Therm Anal Calorim. 2012;107:233–9.

    Article  Google Scholar 

  17. Borrachero MV, Payá J, Bonilla M, Monzó J. Nuevos procedimientos de análisis termogravimétrico para la caracterización de materiales de construcción: aplicación a yesos. Actas del VIII Congreso Nacional de Materiales (Valencia) 2004;89–96.

  18. Tobón JI, Payá J, Borrachero MV, Restrepo OJ. Mineralogical evolution of Porland cement blended with silica nanoparticles and its effect on mechanical strength. Constr Build Mater. 2012;36:736–42.

    Article  Google Scholar 

  19. Payá J, Monzó J, Borrachero MV. Fluid catalytic cracking catalyst residue (FC3R): an excellent mineral by-product for improving early strength development of cement mixtures. Cem Concr Res. 1999;29:1773–9.

    Article  Google Scholar 

  20. Payá J, Monzó J, Borrachero MV, Velázquez S. Cement equivalence factor evaluations for fluid catalytic cracking residue. Cem Concr Compos. 2013;39:12–7.

    Article  Google Scholar 

  21. Su N, Fang HY, Chem ZH, Liu FS. Reuse of waste catalysts from petrochemical industries for cement substitution. Cem Concr Res. 2000;30:1773–8.

    Article  CAS  Google Scholar 

  22. de Lomas MG, de Rojas MIS, Frías M. Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars. J Therm Anal Calorim. 2007;90:443–7.

    Article  Google Scholar 

  23. Soriano L, Monzó J, Bonilla M, Tashima MM, Payá J, Borrachero MV. Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cem Concr Compos. 2013;42:41–8.

    Article  CAS  Google Scholar 

  24. Pacewska B, Willińska I, Bulowska M. Calorimetric investigation of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim. 2009;97:61–6.

    Article  CAS  Google Scholar 

  25. Payá J, Monzó J, Borrachero MV, Velázquez S, Bonilla M. Determination of pozzolanic reaction of fluid catalytic cracking catalyst residue. Thermogravimetric analysis studies on FC3R-lime pastes. Cem Concr Res. 2003;33:1085–91.

    Article  Google Scholar 

  26. Payá J, Monzó J, Borrachero MV, Velázquez S. Evaluation of the pozzolanic activity of fluid catalytic cracking residue (FC3R). Thermogravimetric analysis studies on FC3R- Portland cement pastes. Cem Concr Res. 2003;33:603–9.

    Article  Google Scholar 

  27. Pacewska B, Willińska I, Bukowska M. Hydration of cement slurry in the presence of spent cracking catalyst. J Therm Anal Calorim. 2000;60:71–8.

    Article  CAS  Google Scholar 

  28. Pinto CA, Büchler PM, Dweck J. Pozzolanic properties of a residual FCC catalyst during the early stages of cement hydration. Evaluation by thermal analysis. J Therm Anal Calorim. 2007;87:715–20.

    Article  CAS  Google Scholar 

  29. Dweck J, Pinto CA, Büchler PM. Study of a brazilian spent catalyst as cement aggregate by thermal and mechanical analysis. J Therm Anal Calorim. 2008;92:121–7.

    Article  CAS  Google Scholar 

  30. Willińska I, Pacewska B. Calorimetric and thermal analysis studies on the influence of waste aluminosilicate catalyst on the hydration of fly ash-cement paste. J Therm Anal Calorim. 2014;116:689–97.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, Spain (Project MAT 2001-2694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Tashima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soriano, L., Tashima, M.M., Bonilla, M. et al. Use of high-resolution thermogravimetric analysis (HRTG) technique in spent FCC catalyst/Portland cement pastes. J Therm Anal Calorim 120, 1511–1517 (2015). https://doi.org/10.1007/s10973-015-4526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4526-z

Keywords

Navigation