Skip to main content
Log in

Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Since carbon nanotubes (CNTs) are unstable in different polar solvents such as water, using surfactants can open a new gateway for solving the challenge by attaching non-covalent hydrophilic bonds. Here, the influence of different surfactants including gum arabic (GA), cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) on stability and thermophysical properties of multi-walled carbon nanotubes (MWCNTs) in aqueous media is experimentally investigated. To reach this purpose, aqueous suspension of surfactant–MWCNT was synthesized in the ratios 0.5–1, 1–1 and 2–1. Zeta potential was used to determine stability of above-mentioned suspensions as a common method. Dynamic light scattering analysis was also employed to determine particles size distribution. The results indicated relative stability of suspensions in all ratios. It was also found that the minimum particle size was obtained in the presence of the ratio 1–1 of SDS and CTAB. Thermophysical properties of above-mentioned suspensions including viscosity, shear stress, electrical conductivity, surface tension and density were also studied at the range of 20–80 °C. The results indicated an increase in the electrical conductivity, density, viscosity, shear stress and a decrease in the surface tension (except in GA) of suspensions in all concentrations relative to pure water in constant temperature. As temperature increases, the electrical conductivity increases significantly, while the viscosity, shear stress, density and surface tension decreases more or less for all concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    Article  CAS  Google Scholar 

  2. Yiamsawas T, Mahian O, Dalkilic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5.

    Article  CAS  Google Scholar 

  3. Amiri A, Shanbedi M, Amiri H, Heris SZ, Kazi S, Chew B, et al. Pool boiling heat transfer of CNT/water nanofluids. Appl Therm Eng. 2014;71(1):450–9.

    Article  CAS  Google Scholar 

  4. Amiri A, Memarpoor-Yazdi M, Shanbedi M, Eshghi H. Influence of different amino acid groups on the free radical scavenging capability of multi walled carbon nanotubes. J Biomed Mater Res A. 2013;101A(8):2219–28.

    Article  CAS  Google Scholar 

  5. Shanbedi M, Heris SZ, Amiri A, Adyani S, Alizadeh M, Baniadam M. Optimization of the thermal efficiency of a two-phase closed thermosyphon using active learning on the human algorithm interaction. Numer Heat Transf A Appl. 2014;66(8):947–62.

    Article  Google Scholar 

  6. Tabari ZT, Heris SZ. Heat transfer performance of milk pasteurization plate heat exchangers using MWCNT/water nanofluid. J Dispers Sci Technol. 2014;36(2):196–204.

    Article  Google Scholar 

  7. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. International Mechanical Engineering Congress and Exposition; FED 231/MD 66. San Francisco: ASME; 1995. p. 99–105.

  8. Barbés B, Páramo R, Blanco E, Pastoriza-Gallego M, Piñeiro M, Legido J, et al. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111(2):1615–25.

    Article  Google Scholar 

  9. Moreira L, Carvalho EA, Bell MJV, Anjos V, Sant’Ana AC, Alves A, et al. Thermo-optical properties of silver and gold nanofluids. J Therm Anal Calorim. 2013;114(2):557–64.

    Article  CAS  Google Scholar 

  10. Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115(2):1883–91.

    Article  Google Scholar 

  11. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117(2):675–81.

    Article  CAS  Google Scholar 

  12. Hosseini SM, Moghadassi AR, Henneke D, Elkamel A. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles. J Therm Anal Calorim. 2010;101(1):113–8.

    Article  CAS  Google Scholar 

  13. Shanbedi M, Zeinali Heris S, Baniadam M, Amiri A, Maghrebi M. Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon. Ind Eng Chem Res. 2012;51(3):1423–8.

    Article  CAS  Google Scholar 

  14. Zeinali Heris S, Etemad SG, Nasr Esfahany M. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33(4):529–35.

    Article  CAS  Google Scholar 

  15. Beheshti A, Shanbedi M, Zeinali Heris S. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J Therm Anal Calorim. 2014;118(3):1451–60.

    Article  CAS  Google Scholar 

  16. Hong J, Lee J, Hong C, Shim S. Improvement of thermal conductivity of poly(dimethyl siloxane) using silica-coated multi-walled carbon nanotube. J Therm Anal Calorim. 2010;101(1):297–302.

    Article  CAS  Google Scholar 

  17. Sparavigna A. Lattice specific heat of carbon nanotubes. J Therm Anal Calorim. 2008;93(3):983–6.

    Article  CAS  Google Scholar 

  18. Shanbedi M, Zeinali Heris S, Baniadam M, Amiri A. The effect of multi-walled carbon nanotube/water nanofluid on thermal performance of a two-phase closed thermosyphon. Exp Heat Transf. 2013;26(1):26–40.

    Article  CAS  Google Scholar 

  19. Amiri A, Shanbedi M, Eshghi H, Zeinali Heris S, Baniadam M. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. J Phys Chem C. 2012;116(5):3369–75.

    Article  CAS  Google Scholar 

  20. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.

    Article  CAS  Google Scholar 

  21. Das SK, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf. 2003;46(5):851–62.

    Article  CAS  Google Scholar 

  22. Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy. 2012;97:876–80.

    Article  CAS  Google Scholar 

  23. Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7.

    Article  CAS  Google Scholar 

  24. Halelfadl S, Maré T, Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Therm Fluid Sci. 2014;53:104–10.

    Article  CAS  Google Scholar 

  25. Ponmani S, William JKM, Samuel R, Nagarajan R, Sangwai JS. Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Colloids Surf A. 2014;443:37–43.

    Article  CAS  Google Scholar 

  26. Ganguly S, Sikdar S, Basu S. Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol. 2009;196(3):326–30.

    Article  CAS  Google Scholar 

  27. Xue H, Fan J, Hu Y, Hong R, Cen K. The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon. J Appl Phys. 2006;100(10):104909–14.

    Article  Google Scholar 

  28. Cheng L, Mewes D, Luke A. Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review. Int J Heat Mass Transf. 2007;50(13):2744–71.

    Article  CAS  Google Scholar 

  29. Pantzali M, Kanaris A, Antoniadis K, Mouza A, Paras S. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int J Heat Fluid Flow. 2009;30(4):691–9.

    Article  CAS  Google Scholar 

  30. Kathiravan R, Kumar R, Gupta A, Chandra R. Characterization and pool boiling heat transfer studies of nanofluids. J Heat Transf. 2009;131(8):081902–9.

    Article  Google Scholar 

  31. Riehl RR, editor. Analysis of loop heat pipe behaviour using nanofluid. In: Proceedings of heat powered cycles international conference (HPC), New Castle, UK; 2006.

  32. Syam Sundar L, Ramanathan S, Sharma K, Babu PS. Temperature dependent flow characteristics of Al2O3 nanofluid. Int J Nanotechnol Appl. 2007;1(2):35–44.

    Google Scholar 

  33. Harkirat. Preparation and characterization of nanofluids and some investigation in biological applications. Thesis report. Patiala: Thapar University; 2010.

  34. Shanbedi M, Zeinali Heris S, Amiri A, Baniadam M. Improvement in heat transfer of a two-phased closed thermosyphon using silver-decorated MWCNT/water. J Dispers Sci Technol. 2013;35(8):1086–96.

    Article  Google Scholar 

  35. Sefiane K, Skilling J, MacGillivray J. Contact line motion and dynamic wetting of nanofluid solutions. Adv Colloid Interface Sci. 2008;138(2):101–20.

    Article  CAS  Google Scholar 

  36. Kim S, Bang I, Buongiorno J, Hu L. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf. 2007;50(19):4105–16.

    Article  CAS  Google Scholar 

  37. Anoop K, Kabelac S, Sundararajan T, Das SK. Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J Appl Phys. 2009;106(3):034909–15.

    Article  Google Scholar 

  38. Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev. 2007;11(3):512–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Iran Nanotechnology Initiative Council for financial support and the Khorasan Research Institute for Food Science and Technology for performing the characterization analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Zeinali Heris.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanbedi, M., Zeinali Heris, S. & Maskooki, A. Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants. J Therm Anal Calorim 120, 1193–1201 (2015). https://doi.org/10.1007/s10973-015-4404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4404-8

Keywords

Navigation