Skip to main content
Log in

Capsicum annuum extracts/β-cyclodextrin complexes

Thermal analyses—Karl Fischer water titration correlations and antioxidant activity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, thermal analyses and Karl Fischer titration correlations on the new varieties of Capsicum annuum L. extracts/β-cyclodextrin complexes were performed. Two of seven studied Capsicum varieties containing the highest concentration of capsaicin (0.7 and 1.1 mg g−1 of dry sample) were used for obtaining Capsicum extracts/β-cyclodextrin complexes by co-crystallization method. Thermogravimetric analysis (TG) indicates mass losses with 5–5.7 % lower for the complexes in comparison with β-cyclodextrin, while differential scanning calorimetry analysis (DSC) shows a temperature peak shift to lower values, from 378.2 K (105 °C) for β-cyclodextrin to 355.2–361.2 K (82–88 °C) for complexes. On the other hand, Karl Fischer water titration (KFT) indicates a water concentration of 10.9–11.8 %, with 3.1–4.1 % lower than for β-cyclodextrin (14.9 %). The antioxidant activity of Capsicum extracts/β-cyclodextrin complexes has values comparable with standard antioxidant compound solutions, being significant longer time than the starting extracts. Statistically significant correlations between TG, DSC, and KFT main parameters [TG mass loss up to 423.2 K (150 °C), DSC peak temperature corresponding to water dissociation and KFT water content, and water reaction rate for “strongly-retained” water molecules partially replaced from the cyclodextrin cavity in the complexation process] were obtained, proving the formation of guest/host (Capsicum bioactive compounds/β-cyclodextrin) supramolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zimmer AR, Leonardi B, Miron D, Schapoval E, de Oliveira JR, Gosmann G. Antioxidant and anti-inflammatory properties of Capsicum baccatum: from traditional use to scientific approach. J Ethnopharmacol. 2012;139:228–33.

    Article  CAS  Google Scholar 

  2. Chen L, Kang Y-H. Anti-inflammatory and antioxidant activities of red pepper (Capsicum annuum L.) stalk extracts: comparison of pericarp and placenta extracts. J Funct Foods. 2013;5:1724–31.

    Article  CAS  Google Scholar 

  3. Loizzo MR, Pugliese A, Bonesi M, De Luca D, O’Brien N, Menichini F, et al. Influence of drying and cooking process on the phytochemical content, antioxidant and hypoglycaemic properties of two bell Capsicum annum L. cultivars. Food Chem Toxicol. 2013;53:392–401.

    Article  CAS  Google Scholar 

  4. Tundis R, Menichini F, Bonesi M, Conforti F, Statti G, Menichini F, et al. Antioxidant and hypoglycaemic activities and their relationship to phytochemicals in Capsicum annuum cultivars during fruit development. LWT Food Sci Technol. 2013;53:370–7.

    Article  CAS  Google Scholar 

  5. Deepa N, Kaur C, George B, Singh B, Kapoor HC. Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT Food Sci Technol. 2007;40:121–9.

    Article  CAS  Google Scholar 

  6. Arslan D, Özcan MM. Dehydration of red bell-pepper (Capsicum annuum L.): change in drying behavior, colour and antioxidant content. Food Bioprod Process. 2011;89:504–13.

    Article  Google Scholar 

  7. Silva LR, Azevedo J, Pereira MJ, Valentão P, Andrade PB. Chemical assessment and antioxidant capacity of pepper (Capsicum annuum L.) seeds. Food Chem Toxicol. 2013;53:240–8.

    Article  CAS  Google Scholar 

  8. Vega Gálvez A, Scala KD, Rodríguez K, Lemus Mondaca R, Miranda M, López J, et al. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chem. 2009;117:647–53.

    Article  Google Scholar 

  9. Bae H, Jayaprakasha GK, Jifon J, Patil BS. Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food Chem. 2012;134:1912–8.

    Article  CAS  Google Scholar 

  10. Hayman M, Kam PCA. Capsaicin: a review of its pharmacology and clinical applications. Curr Anaesth Crit Care. 2008;19:338–43.

    Article  Google Scholar 

  11. Topuz A, Ozdemir F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J Food Compos Anal. 2007;20:596–602.

    Article  CAS  Google Scholar 

  12. de Aguiar AC, Sales LP, Coutinho JP, Barbero GF, Godoy HT, Martínez J. Supercritical carbon dioxide extraction of Capsicum peppers: global yield and capsaicinoid content. J Supercrit Fluids. 2013;81:210–6.

    Article  Google Scholar 

  13. Barbero GF, Ruiz AG, Liazid A, Palma M, Vera JC, Barroso CG. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.). Food Chem. 2014;153:200–6.

    Article  CAS  Google Scholar 

  14. Ghasemnezhad M, Sherafati M, Payvast GA. Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. J Funct Foods. 2011;3:44–9.

    Article  CAS  Google Scholar 

  15. Collera Zúñiga O, Jiménez FG, Gordillo RM. Comparative study of carotenoid composition in three Mexican varieties of Capsicum annuum L. Food Chem. 2005;90:109–14.

    Article  Google Scholar 

  16. Szejtli J. Past, present, and future of cyclodextrin research. Pure Appl Chem. 2004;76(10):1825–45.

    Article  CAS  Google Scholar 

  17. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

    Article  CAS  Google Scholar 

  18. Donzié C, Coleman AW. Solvent effects in competition between guest molecules for β-cyclodextrin. J Incl Phenom Mol Recognit Chem. 1995;23:11–21.

    Article  Google Scholar 

  19. Wenz G. Influence of intramolecular hydrogen bonds on the binding potential of methylated β-cyclodextrin derivatives. Beilstein J Org Chem. 2012;8:1890–5.

    Article  CAS  Google Scholar 

  20. Mazzobre MF, dos Santos CI, del Pilar Buera M. Solubility and stability of β-cyclodextrin–terpineol inclusion complex as affected by water. Food Biophys. 2011;6:274–80.

    Article  Google Scholar 

  21. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329–57.

    Article  Google Scholar 

  22. Menezes PP, Serafini MR, Quintans Júnior LJ, Silva GF, Oliveira JF, Carvalho FMS, et al. Inclusion complex of (−)-linalool and β-cyclodextrin. J Therm Anal Calorim. 2014;115:2429–37.

    Article  CAS  Google Scholar 

  23. Bethanis K, Tzamalis P, Tsorteki F, Kokkinou A, Christoforides E, Mentzafos D. Structural study of the inclusion compounds of thymol, carvacrol and eugenol in β-cyclodextrin by X-ray crystallography. J Incl Phenom Macrocycl Chem. 2013;77:163–73.

    Article  CAS  Google Scholar 

  24. Kfoury M, Auezova L, Fourmentin S, Greige Gerges H. Investigation of monoterpenes complexation with hydroxypropyl-β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2014;. doi:10.1007/s10847-014-0385-7.

    Google Scholar 

  25. Hădărugă DI, Hădărugă NG, Bandur G, Isengard H-D. Water content of flavonoid/cyclodextrin nanoparticles: relationship with the structural descriptors of biologically active compounds. Food Chem. 2012;132(4):1651–9.

    Article  Google Scholar 

  26. Hădărugă DI, Hădărugă NG, Butnaru G, Tatu C, Gruia A. Bioactive microparticles (10): thermal and oxidative stability of nicotine and its complex with β-cyclodextrin. J Incl Phenom Macrocycl Chem. 2010;68(1):155–64.

    Google Scholar 

  27. Hădărugă NG, Hădărugă DI, Isengard H-D. Water content of natural cyclodextrins and their essential oil complexes: a comparative study between Karl Fischer titration and thermal methods. Food Chem. 2012;132(4):1741–8.

    Article  Google Scholar 

  28. Hădărugă NG, Hădărugă DI, Păunescu V, Tatu C, Ordodi VL, Bandur G, et al. Bioactive nanoparticles (6). Thermal stability of linoleic acid/α and β cyclodextrin complexes. Food Chem. 2006;99(3):500–8.

    Article  Google Scholar 

  29. Serafini MR, Menezes PP, Costa LP, Lima CM, Quintans Júnior LJ, Cardoso JC, et al. Interaction of p-cymene with β-cyclodextrin. J Therm Anal Calorim. 2012;109:951–4.

    Article  CAS  Google Scholar 

  30. Rocha BA, Rodrigues MR, Bueno PCP, de Mello Costa-Machado AR, de Oliveira Lima Leite Vaz MM, Nascimento AP AP, et al. Preparation and thermal characterization of inclusion complex of Brazilian green propolis and hydroxypropyl-β-cyclodextrin. Increased water solubility of the chemical constituents and antioxidant activity. J Therm Anal Calorim. 2012;108:87–94.

    Article  CAS  Google Scholar 

  31. Wszelaka-Rylik M, Gierycz P. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim. 2013;111:2029–35.

    Article  CAS  Google Scholar 

  32. Deli J, Matus Z, Szabolcs J. Carotenoid composition in the fruits of black paprika (Capsicum annuum variety longum nigrum) during ripening. J Agric Food Chem. 1992;40(11):2072–6.

    Article  CAS  Google Scholar 

  33. Khan MMR, Rahman MM, Islam MS, Begum SA. A simple UV-spectrophotometric method for the determination of vitamin C content in various fruits and vegetables at Sylhet area in Bangladesh. J Biol Sci. 2006;6(2):388–92.

    Article  CAS  Google Scholar 

  34. Hădărugă NG, Hădărugă DI, Isengard H-D. “Surface water” and “strong-bonded water” in cyclodextrins: a Karl Fischer titration approach. J Incl Phenom Macrocycl Chem. 2013;75:297–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel I. Hădărugă.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegheş, A., Hădărugă, N.G., Fuliaş, AV. et al. Capsicum annuum extracts/β-cyclodextrin complexes. J Therm Anal Calorim 120, 603–615 (2015). https://doi.org/10.1007/s10973-014-4229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4229-x

Keywords

Navigation