Skip to main content
Log in

Thermokinetic characterisation of tin(II) chloride

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermokinetic behaviour of SnCl2 was investigated using differential scanning calorimetry and thermogravimetry techniques under non-isothermal conditions in air, complemented by electron microscopy and Raman spectroscopy. According to the results obtained, the oxidation of SnCl2 at the heating rates of 5 and 100 °C min−1 leads to the in situ formation of highly crystalline SnO2 nanostructures in the form of nanoparticles and nanorods, respectively. The oxidation of SnCl2 was found to be a liquid–solid (LS) phase transition at the heating rates equal or lower than 10 °C min−1 and a gas–solid phase transition at the heating rates equal or greater than 20 °C min−1. The activation energy of melting, vaporisation and LS oxidation of SnCl2 was determined to be 198, 93 and 91 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen J, Xu J. SnO2-based R134a gas sensor: sensing materials preparation, gas response and sensing mechanism. Sens Actuators B. 2011;157:494–9.

    Article  CAS  Google Scholar 

  2. Leem JW, Yu JS. Physical properties of electrically conductive Sb-doped SnO2 transparent electrodes by thermal annealing dependent structural changes for photovoltaic applications. Mater Sci Eng B. 2011;176:1207–12.

    Article  CAS  Google Scholar 

  3. Saadeddin I, Pecquenard B, Manaud JP, Decourt R, Labrugere C, Buffeteau T, Campet G. Synthesis and characterization of single- and co-doped SnO2 thin films for optoelectronic applications. Appl Surf Sci. 2007;253:5240–9.

    Article  CAS  Google Scholar 

  4. Sun J, Wan Q, Lu A, Jiang J. Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature. Appl Phys Lett. 2009;95(222108):1–3.

    Google Scholar 

  5. Fukai Y, Kondo Y, Mori S, Suzuki E. Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length. Electrochem Commun. 2007;9:1439–43.

    Article  CAS  Google Scholar 

  6. Lingmin Y, Xinhui F, Lijun Q, Lihe M, Wen Y. Dependence of morphologies for SnO2 nanostructures on their sensing property. Appl Surf Sci. 2011;257:3140–4.

    Article  Google Scholar 

  7. Wu JM, Kuo CH. Ultraviolet photodetectors made from SnO2 nanowires. Thin Solid Films. 2009;517:3870–3.

    Article  CAS  Google Scholar 

  8. Xia G, Li N, Li D, Liu R, Xiao N, Tian D. Molten-salt decomposition synthesis of SnO2 nanoparticles as anode materials for lithium ion batteries. Mater Lett. 2011;65:3377–9.

    Article  CAS  Google Scholar 

  9. Shin JH, Park HM, Song JY. Phase transformation of hierarchical nanobranch structure from SnO to SnO2 and its electrochemical capacitance. J Alloy Compd. 2013;551:451–5.

    Article  CAS  Google Scholar 

  10. Liewhiran C, Tamaekong N, Wisitsoraat A, Phanichphant S. Highly selective environmental sensors based on flame-spray-made SnO2 nanoparticles. Sens Actuators B. 2012;163:51–60.

    Article  CAS  Google Scholar 

  11. Aziz M, Abbas SS, Baharom WRW, Mahmud WZW. Structure of SnO2 nanoparticles by sol–gel method. Mater Lett. 2012;74:62–4.

    Article  CAS  Google Scholar 

  12. Zhang J, Wang S, Wang Y, Xu M, Xia H, Zhang S, Huang W, Guo X, Wu S. Facile synthesis of highly ethanol-sensitive SnO2 nanoparticles. Sens Actuators B. 2009;139:369–74.

    Article  CAS  Google Scholar 

  13. Nayral C, Viala E, Colliere V, Fau P, Senocq F, Maisonnat A, Chaudret B. Synthesis and use of a novel SnO2 nanomaterial for gas sensing. Appl Surf Sci. 2000;164:219–26.

    Article  CAS  Google Scholar 

  14. Sangami G, Dharmaraj N. UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles. Spectrochim Acta A. 2012;97:847–52.

    Article  CAS  Google Scholar 

  15. Liang Y, Fan J, Xia X, Jia Z. Synthesis and characterisation of SnO2 nano-single crystals as anode materials for lithium-ion batteries. Mater Lett. 2007;61:4370–3.

    Article  CAS  Google Scholar 

  16. Yadav JB, Patil RB, Puri RK, Puri V. Studies on undoped SnO2 thin film deposited by chemical reactive evaporation method. Mater Sci Eng B. 2007;139:69–73.

    Article  CAS  Google Scholar 

  17. Kamali AR, Fray DJ. Solid phase growth of tin oxide nanostructures. Mater Sci Eng B. 2012;177:819–25.

    Article  CAS  Google Scholar 

  18. Siddons G, Donald H, Jenkins B, Mucklejohn SA, Devonshire R. Selected thermochemical parameters for tin(II) halides, SnXX′ (X, X′ = Cl, Br, I). J Chem Eng Data. 2009;54:2153–7.

    Article  CAS  Google Scholar 

  19. Saloni J, Roszak S, Miller M, Leszczynski J. Theoretical thermodynamics and the nature of interactions of the quasi-binary NaCl–SnCl2 system. J Phys Chem A. 2006;110:12535–9.

    Article  CAS  Google Scholar 

  20. Lee EPF, Dyke JM, Chow W, Mok DKW, Chau F. Ab Initio study of low-lying electronic states of SnCl2. J Phys Chem A. 2007;111:13193–9.

    Article  CAS  Google Scholar 

  21. Clarke JHR, Solomons C. Raman spectra and the structure of molten stannous chloride and molten mixtures of stannous chloride and potassium chloride. J Chem Phys. 1967;47:1823–6.

    Article  CAS  Google Scholar 

  22. Hilpert K, Roszak S, Saloni J, Miller M, Lipkowski P, Leszczynski J. The dimerization of SnCl2(g): mass spectrometric and theoretical studies. J Phys Chem A. 2005;109:1286–94.

    Article  CAS  Google Scholar 

  23. Kamali AR, Divitini G, Ducati C, Fray DJ. Transformation of molten SnCl2 to SnO2 nano-single crystals. Ceram Int. 2014;40:8533–8.

    Article  CAS  Google Scholar 

  24. Blaine RL, Kissinger HE. Homer Kissinger, and the Kissinger equation. Thermochim Acta. 2012;540:1–6.

    Article  CAS  Google Scholar 

  25. Kamali AR, Fray DJ, Schwandt C. Thermokinetic characteristics of lithium chloride. J Therm Anal Calorim. 2011;104:619–26.

    Article  CAS  Google Scholar 

  26. Çılgı GK, Cetişli H, Donat R. Thermal and kinetic analysis of uranium salts. J Therm Anal Calorim. 2014;115:2007–20.

    Article  Google Scholar 

  27. Huang C, Mei X, Cheng Y, Li Y, Zhu X. A model-free method for evaluating theoretical error of Kissinger equation. J Therm Anal Calorim. 2014;116:1153–7.

    Article  CAS  Google Scholar 

  28. HSC Chemistry 6.12, Outotech Research Oy, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Kamali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, A.R. Thermokinetic characterisation of tin(II) chloride. J Therm Anal Calorim 118, 99–104 (2014). https://doi.org/10.1007/s10973-014-4004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4004-z

Keywords

Navigation