Skip to main content
Log in

Comparative studies on fire-rated and standard gypsum wallboard

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The long-term goal of this research is to improve the fire resistance of gypsum wallboard (GWB). GWB consists mainly of gypsum, i.e., calcium sulfate dihydrate, CaSO4·2H2O. In buildings, the chemical, mechanical, and thermal properties of GWB play an important role in delaying the spread of fire. To build a fire resistant GWB, it is very important to study the thermal, mechanical, physical, and chemical properties of regular GWB and various types of fire resistant wallboards available commercially in the market. Various fire resistant GWBs have been compared and contrasted with reference to a standard wallboard in this study. Regardless of the type of wallboard, the main component is gypsum. The fire resistance property is mainly attributed to the absorption of energy related with the loss of hydrate water going from the dihydrate (CaSO4·2H2O) form to the hemihydrate (CaSO4·½H2O) and from the hemihydrate to the anhydrous form (CaSO4) in a second decomposition. The present paper is a comparative study of commercially available standard, fire-rated Type X, and fire-rated Type C GWBs. Type X wallboards are typically reinforced with non-combustible fibers so as to protect the integrity of the wallboard during thermal shrinkage, while the Type C wallboards are incorporated with more glass fibers and an additive, usually a form of vermiculite. These Type C wallboards have a shrinkage adjusting element that expands when exposed to elevated temperature. Differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and powder X-ray diffraction were used to characterize and compare the materials. Various properties, such as the heat flow, mass loss, dimensional changes, morphology, and crystalline structures of the GWBs were studied using these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Freyer D, Voigt W. Crystallization and phase stability of CaSO4 and CaSO4 based salts. Monatsch Chem. 2003;134:693–5.

    Article  CAS  Google Scholar 

  2. Thomas G. Thermal properties of gypsum plasterboard at high temperatures. Fire Mater. 2006;26:37–9.

    Article  Google Scholar 

  3. Deutsch Y, Nathan Y, Sarig S. Thermogravimetric evaluation of the kinetics of the gypsum hemihydrate soluble anhydrite transitions. J Therm Anal. 1994;42:159–62.

    Article  CAS  Google Scholar 

  4. Cole E, Lancucki C. A refinement of the crystal structure of gypsum CaSO4·2H2O. Acta Crystallogr B. 1974;30:921–4.

    Article  Google Scholar 

  5. Pedersen B, Semminsen D. Neutron diffraction refinement of the structure of gypsum CaSO4·2H2O. Acta Crystallogr B. 1982;38:1074–6.

    Article  Google Scholar 

  6. Schofield PF, Wilson CC, Knight KS, Stretton IC. Temperature related structural variation of the hydrous components in gypsum. Z Kristallogr. 2000;215:707–9.

    Article  CAS  Google Scholar 

  7. Ramachandran VS. Handbook of thermal analysis of construction materials. Norwich: Noyes Publications; 2003.

    Google Scholar 

  8. Chang H, Huang JP, Hou SC. Application of thermo Raman spectroscopy to study dehydration of calcium sulfate dihydrate to calcium sulfate hemihydrate. Mater Chem Phys. 1999;58:12–5.

    Article  CAS  Google Scholar 

  9. ASTM C36/C36M-03e1. Standard specification for gypsum wallboard. West Conshohocken: ASTM International; 2001.

  10. James Beaudoin J, Rolf Feldman F. Mechanism of dehydration of Calcium sulfate dihydrate. J Chem Soc. 1983;79:2071–4.

    Google Scholar 

  11. Lewry AJ, Willianson J. The setting of gypsum plaster, part 1: the hydration of calcium sulfate hemihydrate. J Mater Sci. 1994B; 29:5279–81.

  12. Lewry AJ, Willianson J. The setting of gypsum plaster, part 2: the development of micro structure and strength. J Mater Sci. 1994C; 29:5524–6.

  13. Mehaffey JR, Cuerrier P, Carisse GA. A model for predicting heat transfer through gypsum board wood stud walls exposed to fire. Fire Mater. 1994;18:297–9.

    Article  CAS  Google Scholar 

  14. Borrachero MV, Paya J, Bonilla M, Monzo J. The use of Thermogravimetric analysis technique for the characterization of construction materials: the gypsum case. J Therm Anal Calorim. 2008;91:503–6.

    Article  CAS  Google Scholar 

  15. Kuntze RA. Effect of water vapor on the formation of CaSO4·2H2O modifications. J Chem Soc. 1965;43:2522–5.

    CAS  Google Scholar 

  16. Baux C, Melinge Y, Lanos C, Jauberthie R. Enhanced gypsum panels for fire protection. J Mater Civil Eng. 2008;20:71–4.

    Article  CAS  Google Scholar 

  17. ASTM C1396/C1396M-01. Standard specifications for gypsum board. West Conshohocken: ASTM International; 2001.

  18. Yu L, Brouwers JH. Thermal properties and microstructure of gypsum board and its dehydration products: a theoretical and experimental investigation. Fire Mater. 2012;36:575–9.

    Article  CAS  Google Scholar 

  19. Atoji M, Rundle R. Neuron diffraction study of gypsum, CaSO4·2H2O. J Chem Phys. 1958;29:1306–9.

    Article  CAS  Google Scholar 

  20. Hudson Lamb DL, Strydom CA, Potgieter JH. The thermal dehydration of natural gypsum and pure calcium sulfate dihydrate (gypsum). Thermochim Acta. 1996; 282/283:483–6.

    Google Scholar 

  21. Paulik F, Paulik J, Arnold M. Thermal decomposition of gypsum. Thermochim Acta. 1992;200:195–8.

    Article  CAS  Google Scholar 

  22. Wullschleger L, Ghazi Wakili K. Numerical parameter study of the thermal behavior of gypsum plaster board at fire temperature. Fire Mater. 2007;32:103–6.

    Article  Google Scholar 

  23. Samuel M, Richard G, Scott Kukuck R, David Lenhert B. Influence of gypsum board type (X or C) on real fire performance of partition assemblies. Fire Mater. 2007;31:425–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harika Javangula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javangula, H., Lineberry, Q. Comparative studies on fire-rated and standard gypsum wallboard. J Therm Anal Calorim 116, 1417–1433 (2014). https://doi.org/10.1007/s10973-014-3795-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3795-2

Keywords

Navigation