Skip to main content
Log in

Study on the PMMA/GO nanocomposites with good thermal stability prepared by in situ Pickering emulsion polymerization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is used as a stabilizer in the Pickering emulsion polymerization of methyl methacrylate (MMA) to prepare PMMA/GO nanocomposites. Transmission electron microscope studies of the emulsion polymerization products showed that the average diameter of nanocomposite particles was about 150 nm, the transparent GO flakes covered the surface of the particles, and were well dispersed in polymer matrix. The influence of GO on the thermal stability of PMMA was investigated by thermogravimetry analysis and differential scanning calorimetry. The results showed that the thermal stability and the glass transition temperature (T g) of PMMA/GO nanocomposites were improved obviously compared with PMMA. The apparent activation energy (E a) for the degradation process of PMMA/GO nanocomposites was evaluated by Kissinger method, which indicated that their E a s were much higher than those of PMMA both in nitrogen and air atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev. 2011;40(5):2644–72.

    Article  CAS  Google Scholar 

  2. Yang Y, Wang J, Zhang J, Liu JC, Yang XL, Zhao HY. Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles. Langmuir. 2009;25(19):11808–14.

    Article  CAS  Google Scholar 

  3. Nikolakopoulou A, Tasis D, Sygellou L, Dracopoulos V, Galiotis C, Lianos P. Study of the thermal reduction of graphene oxide and of its application as electrocatalyst in quasi-solid state dye-sensitized solar cells in combination with PEDOT. Electrochim Acta. 2013;111:698–706.

    Article  CAS  Google Scholar 

  4. Gudarzi MM, Sharif F. Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polym Lett. 2012;6(12):1017–31.

    Article  Google Scholar 

  5. Compton OC, Cranford SW, Putz KW, An Z, Brinson LC, Buehler MJ, Nguyen SBT. Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano. 2012;6(3):2008–19.

    Article  CAS  Google Scholar 

  6. Han DL, Yan LF, Chen WF, Li W, Bangal PR. Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. Carbohyd Polym. 2011;83(2):966–72.

    Article  CAS  Google Scholar 

  7. Zhou TN, Chen F, Tang CY, Bai HW, Zhang Q, Deng H, Fu Q. The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Compos Sci Technol. 2011;71(9):1266–70.

    Article  CAS  Google Scholar 

  8. Teixeira RFA, McKenzie HS, Boyd AA, Bon SAF. Pickering emulsion polymerization using laponite clay as stabilizer to prepare armored “soft” polymer latexes. Macromolecules. 2011;44(18):7415–22.

    Article  CAS  Google Scholar 

  9. Cao ZH, Schrade A, Landfester K, Ziener U. Synthesis of raspberry-like organic-inorganic hybrid nanocapsules via pickering miniemulsion polymerization: colloidal stability and morphology. J Polym Sci, Part A. 2011;49(11):2382–94.

    Article  CAS  Google Scholar 

  10. Chen WB, Liu XY, Liu YS, Bang YK, Kim H. Preparation of O/W Pickering emulsion with oxygen plasma treated carbon nanotubes as surfactants. J Industr Eng Chem. 2011;17(3):455–60.

    Article  CAS  Google Scholar 

  11. Bon SAF, Colver PJ. Pickering miniemulsion polymerization using laponite clay as a stabilizer. Langmuir. 2007;23(16):8316–22.

    Article  CAS  Google Scholar 

  12. Li YX, Pan YF, Zhu LL, Wang ZQ, Su DM, Xue G. Facile and controlled fabrication of functional gold nanoparticle-coated polystyrene composite particle. Macromol Rapid Commun. 2011;32(21):1741–7.

    Article  CAS  Google Scholar 

  13. Hua Y, Zhang S, Zhu Y, Chu YQ, Chen JD. Hydrophilic polymer foams with well-defined open-cell structure prepared from pickering high internal phase emulsions. J Polym Sci, Part A. 2013;51(10):2181–7.

    Article  CAS  Google Scholar 

  14. Walther A, Hoffmann M, Müller AHE. Emulsion polymerization using Janus particles as stabilizers. Angew Chem Int Ed. 2008;120(4):723–6.

    Article  Google Scholar 

  15. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):9–1339.

    Article  Google Scholar 

  16. Jeong HK, Jin MH, An KH, Lee YH. Structural stability and variable dielectric constant in poly sodium 4-styrensulfonate intercalated graphite oxide. J Phys Chem C. 2009;3(30):13060–4.

    Article  Google Scholar 

  17. Lee DW, De Los Santos VL, Seo JW, Leon Felix L, Bustamante DA, Cole J, Barnes CHW. The structure of graphite oxide: investigation of its surface chemical groups. J Phys Chem B. 2010;114(17):5723–8.

    Article  CAS  Google Scholar 

  18. Silva MFP, Costa HCJF, Triboni ER, Politi MJ, Isolani PC. Synthesis and characterization of CeO2–graphene composite. J Therm Anal Calorim. 2012;107(1):257–63.

    Article  Google Scholar 

  19. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem. 2006;16(2):155–8.

    Article  CAS  Google Scholar 

  20. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2(3):463–70.

    Article  CAS  Google Scholar 

  21. Lee DW, Seo JW. Sp2/sp3 carbon ratio in graphite oxide with different preparation times. J Phys Chem C. 2011;115(6):2705–8.

    Article  CAS  Google Scholar 

  22. Cote LJ, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc. 2009;131(31):11027–32.

    Article  CAS  Google Scholar 

  23. Zhu Y, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano. 2010;4(2):1227–33.

    Article  CAS  Google Scholar 

  24. Wang G, Yang Z, Li X, Li C. Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method. Carbon. 2005;43(12):2564–70.

    Article  CAS  Google Scholar 

  25. Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH. Thermal stability of graphite oxide. Chem Phys Lett. 2009;470(4):255–8.

    Article  CAS  Google Scholar 

  26. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang JX. Graphene oxide sheets at interfaces. J Am Chem Soc. 2010;132(23):8180–6.

    Article  CAS  Google Scholar 

  27. Kim F, Cote LJ, Huang JX. Graphene oxide: surface activity and two dimensional assembly. Adv Mater. 2010;22(17):1954–8.

    Article  CAS  Google Scholar 

  28. Steurer P, Wissert R, Thomann R, Mulhaupt R. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun. 2009;30(4–5):316–27.

    Article  CAS  Google Scholar 

  29. Chen JH, Cheng CY, Chiu WY, Lee CF, Liang NY. Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization. Eur Polym J. 2008;44(10):3271–9.

    Article  CAS  Google Scholar 

  30. Bon SAF, Cauvin S, Colver PJ. Colloidosomes as micron-sized polymerisation vessels to create supra colloidal interpenetrating polymer network reinforced capsules. Soft Matter. 2007;3(2):194–9.

    Article  CAS  Google Scholar 

  31. Sadtler V, Rondon-Gonzalez M, Acrement A, Choplin L, Marie E. PEO-covered nanoparticles by emulsion inversion point (EIP) method. Macromol Rapid Commun. 2010;31(11):998–1002.

    Article  CAS  Google Scholar 

  32. Chou IC, Lee CF, Chiu WY. Preparation of novel suspensions of ZnO/living block copolymer latex nanoparticles via pickering emulsion polymerization and their long term stability. J Polym Sci, Part A. 2011;49(16):3524–35.

    Article  CAS  Google Scholar 

  33. Chen J, Liu HL, Hong XQ, Wang ML, Cai C, Zhang QF. Polystyrene/MMT nanocomposites prepared by soap-free emulsion polymerization with high solids content. Colloid Polym Sci. 2012;290(18):1955–63.

    Article  CAS  Google Scholar 

  34. Heo S, Cho SY, Kim DH, Choi Y, Park HH, Jin HJ. Improved thermal properties of graphene oxide-incorporated poly (methyl methacrylate) microspheres. J Nanosci Nanotechnol. 2012;12(7):5990–4.

    Article  CAS  Google Scholar 

  35. Jiang SH, Gui Z, Bao CL, Dai K, Wang X, Zhou KQ, Shi YQ, Lo S, Hu Y. Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chem Eng J. 2013;226:326–35.

    Article  CAS  Google Scholar 

  36. Kashiwagi T, Du F, Winey KI, Groth KM, Shields JR, Bellayer SP, Kim H, Douglas JF. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer. 2005;46(2):471–81.

    Article  CAS  Google Scholar 

  37. Zhu LY, Su SP, Hossenlopp JM. Thermal stability and fire retardancy of PMMA (nano) composites with layered metal hydroxides containing dodecyl sulfate anions. Polym Adv Technol. 2012;23(2):171–81.

    Article  CAS  Google Scholar 

  38. Wang X, Su Q, Hu YM, Wang CZ, Zheng JP. Structure and thermal stability of PMMA/MMT nanocomposites as denture base material. J Therm Anal Calorim. 2014;115(2):1143–51.

    Article  CAS  Google Scholar 

  39. Majoni S, Su SP, Hossenlopp JM. The effect of boron-containing layered hydroxy salt (LHS) on the thermal stability and degradation kinetics of poly (methyl methacrylate). Polym Degrad Stab. 2010;95(9):1593–604.

    Article  CAS  Google Scholar 

  40. Zhang K, Zhang WL, Choi HJ. Facile fabrication of self-assembled PMMA/graphene oxide composite particles and their electroresponsive properties. Colloid Polym Sci. 2013;291(4):955–62.

    Article  CAS  Google Scholar 

  41. Si JJ, Li J, Wang SJ, Li Y, Jing XL. Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide. Compos Part A. 2013;54:166–72.

    Article  CAS  Google Scholar 

  42. Arisawa H, Brill TB. Kinetics and mechanisms of flash pyrolysis of poly (methyl methacrylate)(PMMA). Combust Flame. 1997;109(3):415–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20473038), the Natural Science Foundation of the Education Committee of Jiangsu province (No. 04KJB150066), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wang, X., Jin, X. et al. Study on the PMMA/GO nanocomposites with good thermal stability prepared by in situ Pickering emulsion polymerization. J Therm Anal Calorim 117, 755–763 (2014). https://doi.org/10.1007/s10973-014-3794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3794-3

Keywords

Navigation