Skip to main content
Log in

Effect of catocene on the thermal decomposition of ammonium perchlorate and octogen

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Simultaneous TG/DSC-FT-IR was employed to study the effect of catocene with a high concentration (5, 15, and 25 %) on the thermal decomposition of ammonium perchlorate (AP) and octogen (HMX) with different particle sizes. The experimental results show that catocene has effect on the thermal decomposition of AP and HMX, but the role that catocene playing changes with the concentration of catocene and the particle size of AP and HMX. High concentration of catocene (more than 15 %) benefits the decomposition of fine AP and HMX at low temperature, but has little effect on the decomposition of median and coarse AP. The thermal decomposition of HMX is affected by catocene mainly through increasing the heat release of the first decomposition step, while through both increasing the heat release and decreasing the decomposition temperature of the first decomposition step for the thermal decomposition of AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kuo KK, Summerfield M. Fundamentals of solid-propellant combustion. New York: American Institute of Aeronautics and Astronautics; 1984.

    Book  Google Scholar 

  2. Menke K, Eisele S. Rocket propellants with reduced smoke and high burning rates. Propellant Explos Pyrotech. 1997;22(3):112–9. doi:10.1002/prep.19970220304.

    Article  CAS  Google Scholar 

  3. Yang V, Brill TB, Ren WZ, Zarchan P. Solid propellant chemistry, combustion, and motor interior ballistics, vol. 185. New York: American Institute of Aeronautics and Astronautics; 2000.

    Google Scholar 

  4. Saravanakumar D, Sengottuvelan N, Narayanan V, Kandaswamy M, Varghese TL. Burning-rate enhancement of a high-energy rocket composite solid propellant based on ferrocene-grafted hydroxyl-terminated polybutadiene binder. J Appl Polym Sci. 2011;119(5):2517–24. doi:10.1002/App.32859.

    Article  CAS  Google Scholar 

  5. Guo XD, Li FS, Song HC, Liu GP, Kong LR, Li MN, et al. Combustion characteristics of a novel grain-binding high burning rate propellant. Propellant Explos Pyrotech. 2008;33(4):255–60. doi:10.1002/prep.200800223.

    Article  CAS  Google Scholar 

  6. Kishore K, Verneker VRP, Sunitha MR. Mechanistic studies on the pyrolysis and combustion of polystyrene-ammonium perchlorate propellants in the presence of transition-metal oxides. J Anal Appl Pyrolysis. 1980;2(2):169–74. doi:10.1016/0165-2370(80)80027-1.

    Article  CAS  Google Scholar 

  7. Gore GM, Tipare KR, Bhatewara RC, Prasad US, Gupta M, Mane SR. Evaluation of ferrocene derivatives as burn rate modifiers in AP/HTPB-based composite propellants. Def Sci J. 1999;49(2):151–8.

    CAS  Google Scholar 

  8. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443(1):1–36. doi:10.1016/j.tca.2005.11.038.

    Article  CAS  Google Scholar 

  9. Singh G, Kapoor IPS, Dubey S, Siril PF, Yi JH, Zhao FQ, et al. Effect of mixed ternary transition metal ferrite nanocrystallites on thermal decomposition of ammonium perchlorate. Thermochim Acta. 2008;477(1–2):42–7. doi:10.1016/j.tca.2008.08.005.

    Article  CAS  Google Scholar 

  10. Kapoor IPS, Srivastava P, Singh G. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate. Propellant Explos Pyrotech. 2009;34(4):351–6. doi:10.1002/prep.200800025.

    Article  CAS  Google Scholar 

  11. Fujimura K, Miyake A. Effect of the particle size and specific surface area of ferric oxide catalyst on the burning rate of AP/HTPB solid propellant. Sci Technol Energ Mater. 2010;71(3–4):65–9.

    CAS  Google Scholar 

  12. Xiao FJ, Luo YJ. Ferrocene containing hyperbranched polyester: structure and catalytic performance for thermal decomposition of ammonium perchlorate. New Adv Mater. 2011;197–198:1225–30. doi:10.4028/www.scientific.net/AMR.197-198.1225.

    Article  Google Scholar 

  13. Florczak B. Effect of additives on properties of composite solid propellants. Przem Chem. 2012;91(9):1858–62.

    CAS  Google Scholar 

  14. Shen SM, Wang SW, Chiu YS, Chen SI, Chang FM, Huang CC. Thermal-decomposition of cured gap-Ap propellants containing catocene. Thermochim Acta. 1993;216:255–66. doi:10.1016/0040-6031(93)80396-R.

    Article  CAS  Google Scholar 

  15. Shen SM, Chen SI, Wu BH. The Thermal-decomposition of ammonium-perchlorate (Ap) containing a burning-rate modifier. Thermochim Acta. 1993;223:135–43. doi:10.1016/0040-6031(93)80128-W.

    Article  CAS  Google Scholar 

  16. Liu LL, He GQ, Wang YH. Thermal reaction characteristics of the boron used in the fuel-rich propellant. J Therm Anal Calorim. 2013;114(3):1057–68. doi:10.1007/s10973-013-3119-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Doctorate Foundation of Northwestern Polytechnical University (CX201306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-lin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Ll., He, Gq., Wang, Yh. et al. Effect of catocene on the thermal decomposition of ammonium perchlorate and octogen. J Therm Anal Calorim 117, 621–628 (2014). https://doi.org/10.1007/s10973-014-3792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3792-5

Keywords

Navigation