Skip to main content
Log in

Synthesis, spectral, thermal, and antimicrobial studies of transition metal complexes of atorvastatin calcium as a lipid-lowering agent

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Herein, the present work comprises the synthesis of atorvastatin calcium (AVT) complexes with various transition metals. Ten kinds of complexes [Cr(AVT)2(Cl)(H2O)]·5H2O (1), [Mn(AVT)2(H2O)2] (2), [Fe(AVT)2(Cl)(H2O)]·9H2O (3), [Co(AVT)2(H2O)2]·8H2O (4), [Ni(AVT)2(H2O)2]·4H2O (5), [Cu(AVT)2(H2O)2] (6), [Zn(AVT)2]·2H2O (7), [Pt(AVT)2(Cl)2] (8), [Au(AVT)3] (9), and [Pd(AVT)(Cl)2] (10) were obtained. The complexes were characterized by different physicochemical, spectroscopic, and elemental analyses. Results suggest that atorvastatin interacts with the metals as a monoanionic bidentate ligand. These complexes were also tested for their antibacterial activity against six different microorganisms, and the results were compared with the parent drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. http://www.rxlist.com/lipitor-drug.htm.

  2. Malinowski JM. Atorvastatin: a hydroxymethylglutaryl-coenzyme A reductase inhibitor. Am J Health Syst Pharm. 1998;55:2253–67.

    CAS  Google Scholar 

  3. Sugiyama M, Ohashi M, Takase H, Sato K, Ueda R, Dohi Y. Effects of atorvastatin on inflammation and oxidative stress. Heart Vessels. 2005;20:133–6.

    Article  Google Scholar 

  4. Lennernas H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42:1141–60.

    Article  Google Scholar 

  5. Nour El-Dien FA, Mohamed GG, Mohamed NA, Abd El-Halim. Synthesis, spectroscopic, thermal characterization, and antimicrobial activity of miconazole drug and its metal complexes. J Therm Anal Calorim. 2012;109:883–92.

  6. Nour El-Dien FA, Mohamed GG, Mohamed NA, Abd El-Halim. Chelating behavior, thermal studies and biocidal efficiency of tioconazole and its complexes with some transition metal ions. J Therm Anal Calorim. 2013;111:173–81.

  7. Solima MH, Hindy AMM, Mohamed GG. Thermal decomposition and biological activity studies of some transition metal complexes derived from mixed ligands sparfloxacin and glycine. J Therm Anal Calorim. 2014;115:987–1001.

    Article  Google Scholar 

  8. Köse DA, Öztürk B, Şahin O, Büyükgüngör O. Mixed ligand complexes of coumarilic acid/nicotinamide with transition metal complexes. J Therm Anal Calorim. 2014;115:1515–24.

    Article  Google Scholar 

  9. Underhill AE, Bougourd SA, Flugge ML, Gale SE, Gomm PS. Metal complexes of anti-inflammatory drugs. Part VIII: suprofen complex of copper(II). J Inorg Biochem. 1993;52:139–44.

    Article  CAS  Google Scholar 

  10. Kirkova M, Atanassova M, Russanov E. Effects of cimetidine and its metal complexes on nitroblue tetrazolium and ferricytochrome c reduction by superoxide radicals. Gen Pharmacol. 1999;33:271–6.

    Article  CAS  Google Scholar 

  11. Duda AM, Kowalik-Jankowska T, Kozlowski H, Kupka T. Histamine H2 antagonists: powerful ligands for copper(II). Reinterpretation of the famotidine-copper(II) system. J Chem Soc Dalton Trans. 1995;17:2909–13.

    Google Scholar 

  12. Kubiak M, Duda AM, Ganadu ML, Kozlowski H. Crystal structure of a copper(II)–famotidine complex and solution studies of the Cu2+ –famotidine–histidine ternary system. J Chem Soc Dalton Trans. 1996;9:1905–08.

    Google Scholar 

  13. Umadevi B, Muthiah PT, Shui X, Eggleston DS. Metal-drug interactions: synthesis and crystal structure of dichlorodithiabendazolecobalt(II) monohydrate. Inorg Chim Acta. 1995;234:149–52.

    Article  CAS  Google Scholar 

  14. Sanchez-del Grado RM, Navarro M, Perez H, Urbina JA. Toward a novel metal-based chemotherapy against tropical diseases. 2. Synthesis and antimalarial activity in vitro and in vivo of new ruthenium- and rhodium-chloroquine complexes. J Med Chem. 1996;39:1095–99.

    Google Scholar 

  15. Refat MS, El–Metwaly NM. Legitional behavior of 5,5-diethylbarbituric acid sodium salt (HL) towards Mg, Ca, Sr, Ba(II), spectral, thermal and biological studies. J Mol Str. 2011;988(1–3):111–18.

    Google Scholar 

  16. Refat MS, Mohamed SF. Spectroscopic, thermal and antitumor investigations of sulfasalazine drug in situ complexation with alkaline earth metal ions. Spectrochim Acta A. 2011;82:108–17.

    Article  CAS  Google Scholar 

  17. Refat MS. Synthesis, characterization, thermal and antimicrobial studies of diabetic drug models: complexes of vanadyl(II) sulfate with ascorbic acid (vitamin C), riboflavin (vitamin B2) and nicotinamide (vitamin B3). J Mol Struct. 2010;969:163–71.

    Article  CAS  Google Scholar 

  18. Refat MS, El-Shazly SA. Identification of a new anti-diabetic agent by combining VOSO4 and vitamin E in a single molecule: studies on its spectral, thermal and pharmacological properties. Eur J Med Chem. 2010;45(7):3070–9.

    Article  CAS  Google Scholar 

  19. Bauer AW, Kirby WM, Sherris C, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493–6.

    CAS  Google Scholar 

  20. Pfaller MA, Burmeister L, Bartlett MA, Rinaldi MG. Multicenter evaluation of four methods of yeast inoculum preparation. J Clin Microbiol. 1988;26:1437–41.

    CAS  Google Scholar 

  21. National Committee for Clinical Laboratory Standards. Antimicrobial susceptibility of Flavobacteria. Performance. 1997;41.

  22. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A3. Villanova: National Committee for Clinical Laboratory Standards; 1993.

    Google Scholar 

  23. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi: proposed standard M38-A. Wayne: NCCLS; 2002.

    Google Scholar 

  24. National Committee for Clinical Laboratory Standards. Methods for antifungal disk diffusion susceptibility testing of yeast: proposed guideline M44-P. Wayne: NCCLS; 2003.

    Google Scholar 

  25. Liebowitz LD, Ashbee HR, Evans EGV, Chong Y, Mallatova N, Zaidi M, Gibbs D. A two year global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion. Diagn Microbiol Infect Dis. 2001;4:27–33.

    Article  Google Scholar 

  26. Matar MJ, Ostrosky-Zeichner L, Paetznick VL, Rodriguez JR, Chen E, Rex JH. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob Agents Chemother. 2003;47:1647–51.

    Article  CAS  Google Scholar 

  27. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  28. Refat MS. Synthesis and characterization of norfloxacin-transition metal complexes (group 11, IB): spectroscopic, thermal, kinetic measurements and biological activity. Spectrochim Acta A. 2007;68:1393–405.

    Article  Google Scholar 

  29. Turel I, Leban I, Klintschar G, Bukovec N, Zalar S. Synthesis, crystal structure, and characterization of two metal-quinolone compounds. J Inorg Biochem. 1997;66(2):77–82.

    Article  CAS  Google Scholar 

  30. Turel I, Leban I, Bukovec N. Crystal structure and characterization of the bismuth(III) compound with quinolone family member (ciprofloxacin). Antibacterial study. J Inorg Biochem. 1997;66(4):241–5.

    Article  CAS  Google Scholar 

  31. Macias B, Villa MV, Rubio I, Castineiras A, Borras J. Complexes of Ni(II) and Cu(II) with ofloxacin: crystal structure of a new Cu(II) ofloxacin complex. J Inorg Biochem. 2001;84(3–4):163–70.

    Article  CAS  Google Scholar 

  32. Chen ZF, Xiong RG, Zuo JL, Guo Z, You XZ, Fun HK. X-ray crystal structures of Mg2+ and Ca2+ dimers of the antibacterial drug norfloxacin. J Chem Soc, Dalton Trans. 2000;22:4013–4.

    Article  Google Scholar 

  33. Jim′enez-Garrido N, Perell′o L, Ortiz R, Alzuet G, González-Álvarez M, Cantón E, Liu-González M, García-Granda S, Pérez-Priede M. Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin. J Inorg Biochem. 2005;99(3):677–89.

    Article  Google Scholar 

  34. Dresseyn HO. Vibrational analysis of acid derivatives. In: Patai S, editor. The chemistry of acid derivatives. The Chemistry of Functional Groups, Supplement B. Chichester: Wiley; 1992. p. 271–304.

    Google Scholar 

  35. Mehrotra RC, Bohra R. Metal carboxylates. London: Academic Press; 1983.

    Google Scholar 

  36. Colthup NB, Daly LH, Wiberley SE. Introduction to Infrared and Raman Spectroscopy. 3rd ed. Boston: Academic Press; 1990.

    Google Scholar 

  37. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1997.

    Google Scholar 

  38. Ross SD. Inorganic infrared and Raman spectra. London: Mc Graw Hill; 1972.

    Google Scholar 

  39. Singh HL, Vershney AK. Bioinorganic chemistry and application; 2006. pp. 1–7.

  40. Ozturk OF, Sekerci M, Ozdemir E. Synthesis of 5,6-O-cyclohexylidene-1-amino-3-azahexane and Its Co(II), Ni(II), Cu(II) complexes. Russ J Coord Chem. 2005;31:651–4.

    Article  CAS  Google Scholar 

  41. Kose DA, Kaya A, Necefoglu H. Synthesis and characterization of bis(N,N-diethylnicotinamide) m-hydroxybenzoate complexes of Co(II), Ni(H), Cu(II), and Zn(II). Russ J Coord Chem. 2007;33:422–8.

    Article  Google Scholar 

  42. Allan JR, Baird ND, Kassyk AL. Some first row transition metal complexes of nicotinamide and nicotinic acid. J Therm Anal. 1979;16:79–90.

    Article  CAS  Google Scholar 

  43. Lever ABP. The electronic spectra of tetragonal metal complexes: analysis and significance. Coord Chem Rev. 1968;3:119–40.

    Article  CAS  Google Scholar 

  44. Bailar JC, Emeleus H, Nyholm JR, Dickenson AF. Comprehensive inorganic chemistry. Pergamon. 1975;III:517.

    Google Scholar 

  45. Mondal N, Dey DK, Mitra S, Abdul Malik KM. Synthesis and structural characterization of mixed ligand η1-2-hydroxyacetophenone complexes of cobalt(III). Polyhedron. 2000;19:2707–11.

    Article  CAS  Google Scholar 

  46. Lee DL. New concise in inorganic chemistry. New York: ELBS; 1991.

    Google Scholar 

  47. Dubey RK, Dubey UK, Mishra CM. Synthesis and physicochemical characterization of some Schiff base complexes of chromium(III). Indian J Chem A. 2008;47:1208–12.

    Google Scholar 

  48. Cozar O, David L, Chis V, Damian G, Todica M, Agut C. IR and ESR studies on some dimeric copper(II) complexes. J Mol Struct. 2001;563–564:371–5.

    Article  Google Scholar 

  49. Kivelson D, Neiman R. ESR studies on the bonding in copper complexes. J Chem Phys. 1961;35:149–55.

    Article  CAS  Google Scholar 

  50. Hathway BJ, Bardley GN, Gillard RD, editors. Essays in chemistry. New York: Academic press; 1971.

    Google Scholar 

  51. Lever ABP. Inorganic spectroscopy. Amsterdam: Elsevier; 1984.

    Google Scholar 

  52. Hathaway BJ. The evidence for “out-of-the-plane” bonding in axial complexes of the copper(II) ion. Struct Bond. 1973;14:49–67.

    Article  CAS  Google Scholar 

  53. Quan CX, Bin LH, Bang GG. Preparation of nanometer crystalline TiO2 with high photo-catalytic activity by pyrolysis of titanyl organic compounds and photo-catalytic mechanism. Mater Chem Phys. 2005;91:317–24.

    Article  Google Scholar 

  54. Halli MB, Sumathi RB. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base. J Mol Struct. 2012;1022:130–8.

    Article  CAS  Google Scholar 

  55. Vyas DA, Chauhan NA, Parikh AR. Synthesis and microbial activity of quinoxaline based thiazidinones and azetidinone. Indian J Chem B. 2007;46:1699–702.

    Google Scholar 

  56. Petering DH, Sigel H. In metal ions in biological systems. Marcel Dekker. New York, 1973;2:167–172.

Download references

Acknowledgements

This work was supported by grants from Princess Nora Bint Abdul Rahman University, Riyadh, Saudi Arabia under project Grants No. 22/32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moamen S. Refat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1783 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refat, M.S., Al-Saif, F.A. Synthesis, spectral, thermal, and antimicrobial studies of transition metal complexes of atorvastatin calcium as a lipid-lowering agent. J Therm Anal Calorim 120, 863–878 (2015). https://doi.org/10.1007/s10973-014-3784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3784-5

Keywords

Navigation