Skip to main content
Log in

Thermal analysis of epoxy-based nanocomposites: Have solvent effects been overlooked?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Analysis of the available published data calls into question some of the reported effects of silver, graphene, and boron nitride nanoparticles on the cure behavior and glass transition temperature (T g) of epoxy-based conductive nanocomposites. The usefulness of most studies is limited, as the final T g value is only reported for a single composition. More useful studies provide a comparison of T g across compositions and/or to the T g of the neat matrix material. However, the main focus is on nanoparticle effect, while the presence of residual solvent is generally overlooked. Although the data are too sparse for firm conclusions, reductions in T g seem to correlate with a known residual solvent or mild degas conditions (low temperature, unagitated), while increases are more likely when no solvent is used or after rigorous degassing. Using solvent control groups to differentiate solvent effects from filler effects, we conducted our own differential scanning calorimetry experiments. It was found that silver microparticles have no statistically significant effect on T g, but appeared to when solvent content was not accounted for. The erroneous apparent effect is very similar to reported effects for nanoparticles in the literature. If a solvent must be used, we recommend that the residual solvent content be quantified and provide the T g of a control sample with a representative solvent content without nanoparticles. Analysis of the present literature also suggests that (i) nanoparticle surface chemistry has a significant effect and (ii) poor dispersion/aggregation results in a reduction in T g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R. 2006;53:73–197.

    Article  Google Scholar 

  2. Crosby AJ, Lee J-Y. Polymer nanocomposites: the “Nano” effect on mechanical properties. Polym Rev. 2007;47:217–29.

    Article  CAS  Google Scholar 

  3. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A. 2005;393:1–11.

    Article  Google Scholar 

  4. Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog in Polym Sci. 2010;35:837–67.

    Article  CAS  Google Scholar 

  5. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two dimensional nanomaterial. Angew Chem Int Ed. 2009;48:7752–77.

    Article  CAS  Google Scholar 

  6. Das RN, Lauffer JM, Knadle K, Vincent M, Poliks MD, Markovich VR. Nano and micro materials in a Pb-Free world. IEEE Electron Compon and Tech Conf. 2011;1228–33.

  7. Winey KI, Vaia RA. Polymer nanocomposites. MRS Bull. 2007;32:314–9.

    Article  CAS  Google Scholar 

  8. Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small. 2008;4(3):310–25.

    Article  CAS  Google Scholar 

  9. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–7.

    Article  CAS  Google Scholar 

  10. Song W-L, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, Sun Y-P. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed. 2012;51:6498–501.

    Article  CAS  Google Scholar 

  11. Zhi C, Bando Y, Tang C, Golberg D. Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization. Physical Rev B. 2006;74:153413.

    Article  Google Scholar 

  12. Lazar M. Let’s review: physics, the physical setting. 3rd ed. United States: Barrons; 2007. p. 217.

    Google Scholar 

  13. “The Nobel Prize in Physics 2010—Advanced Information”. Nobelprize.org. 14 Jun 2013 http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced.html.

  14. Incropera FP, DeWitt DP. Fundamentals of heat and mass transfer. 5th ed. Hoboken: Wiley; 2002. p. 907.

    Google Scholar 

  15. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: past, present and future. Prog Mater Sci. 2011;56:1178–271.

    Article  CAS  Google Scholar 

  16. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C. Boron nitride nanotubes and nanosheets. ACS Nano. 2010;4(6):2979–93.

    Article  CAS  Google Scholar 

  17. Amoli BM, Gumfekar S, Hu A, Zhou N, Zhao B. Thiocarboxylate functionalization of silver nanoparticles: effect of chain length on the electrical conductivity of nanoparticles and their polymer composites. J Mater Chem. 2012;22:20048–56.

    Article  CAS  Google Scholar 

  18. Jiang H, Moon KS, Li Y, Wong CP. Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater. 2006;18:2969.

    Article  CAS  Google Scholar 

  19. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43:6515–30.

    Article  CAS  Google Scholar 

  20. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer. 2012;53:471–80.

    Article  CAS  Google Scholar 

  21. Zhi C, Bando Y, Tang C, Golberg D. Boron nitride nanotubes. Mater Sci and Eng R. 2010;70:92–111.

    Article  Google Scholar 

  22. Solanki JN, Murthy ZVP. Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res. 2011;50:12311–23.

    Article  CAS  Google Scholar 

  23. Miller SG, Bauer JL, Maryanski MJ, Heimann PJ, Barlow JP, Gosau J-M, Allred RE. Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Compos Sci Tech. 2010;70:1120–5.

    Article  CAS  Google Scholar 

  24. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer. 2011;52:5–25.

    Article  CAS  Google Scholar 

  25. Prime RB. Thermosets. In: Turi EA. Thermal characterization of polymeric materials. New York: Academic Press; 1981. p. 548–53.

  26. Odom RE. RK-TR-63-20: Kinetics of epoxide-carboxylic reaction. army missile research development and engineering laboratory, redstone arsenal Al, Propulsion Directorate; 1963.

  27. Ngai KL. The glass transition and the glassy state. In: Mark J, Ngai KL, Graessley W, Mandelkern L, Samulksi E, Koenig J, Wignall G, editors. Physical properties of polymers. 3rd ed. Cambridge: Cambridge Press; 2003. p. 72–146.

    Google Scholar 

  28. Wunderlich B. The basis of thermal analysis. In: Turi EA, editor. Thermal characterization of polymeric materials. New York: Academic; 1981. p. 169–74.

    Google Scholar 

  29. Utracki LA. Polymer alloys and blends: thermodynamics and rheology. New York: Hanser Publishers; 1990. p. 93–105.

    Google Scholar 

  30. Mark J. The rubber elastic state. In: Mark J, Ngai KL, Graessley W, Mandelkern L, Samulksi E, Koenig J, Wignall G, editors. Physical properties of polymers. 3rd ed. Cambridge: Cambridge Press; 2003. p. 3–71.

    Google Scholar 

  31. DiBenedetto AT. Prediction of the glass transition temperature of polymers: a model based on the principle of corresponding states. J Poly Sci B. 1987;26:1949–69.

    Article  Google Scholar 

  32. Menczel JD, Judovits L, Prime RB, Bair HE, Reading M, Swier S. Differential scanning calorimetry (DSC). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers fundamentals. Hoboken: Wiley; 2009. p. 138–44.

    Chapter  Google Scholar 

  33. Lau K-T, Lu M, Lam C-K, Sheng F-L, Li H-L. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos Sci and Tech. 2005;65:719–25.

    Article  CAS  Google Scholar 

  34. Mondragon I, Bucknal CB. Effects of residual dichloromethane solvent on the cure of epoxy resin. Plast Rubber Compos Process Appl. 1994;21(5):275–81.

    CAS  Google Scholar 

  35. Loos MR, Coelho LAF, Pezzin SH, Amico SC. The effect of acetone addition on the properties of epoxy. Polym Sci Tech. 2008;18(1):76–80.

    CAS  Google Scholar 

  36. Hong S-G, Wu C-S. DSC and FTIR analysis of curing behaviors of epoxy/DICY/solvent open systems. Thermochimica Acta. 1998;316:167–75.

    Article  CAS  Google Scholar 

  37. Yagci Y, Sangermano M, Rizza G. A visible light photochemical route to silver–epoxy nanocomposites by simultaneous polymerization–reduction approach. Polymer. 2008;49:5195–8.

    Article  CAS  Google Scholar 

  38. Park S, Kim DS. Preparation and physical properties of an epoxy nanocomposite with amine-functionalized graphenes. Polym Eng Sci. 2012. doi:10.1002/pen.23368.

  39. Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon. 2011;49:5107–16.

    Article  CAS  Google Scholar 

  40. Zhi CY, Bando Y, Terao T, Tang C, Golberg D. Dielectric and thermal properties of epoxy/boron nitride nanotube composites. Pure Appl Chem. 2010;82(11):2175–83.

    Article  CAS  Google Scholar 

  41. Ganguli S, Roy AK, Anderson DP. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon. 2008;46:806–17.

    Article  CAS  Google Scholar 

  42. Voo R, Mariatti M, Sim LC. Properties of epoxy nanocomposite thin films prepared by spin coating technique. J Plast Film Sheet. 2011. doi:10.1177/8756087911419745.

    Google Scholar 

  43. Martin-Gallego M, Verdejo R, Lopez-Manchado MA, Sangermano M. Epoxy-graphene UV-cured nanocomposites. Polymer. 2011;52:4664–9.

    Article  CAS  Google Scholar 

  44. Chan KL, Mariatti M, Lockman Z, Sim LC. Effects of the size and filler loading on the properties of copper- and silver-nanoparticle-filled epoxy composites. J Appl Polym Sci. 2011;121:3145–52.

    Article  CAS  Google Scholar 

  45. Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N. Fracture and fatigue in graphene nanocomposites. Small. 2010;6(2):179–83.

    Article  CAS  Google Scholar 

  46. Zaman I, Phan TT, Kuan HC, Meng Q, La LTB, Luong L, Youssf O, Maa J. Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer. 2011;52(7):1603–11.

    Article  CAS  Google Scholar 

  47. Guo Y, Bao C, Song L, Yuan B, Hu Y. In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Ind Eng Chem Res. 2011;50:7772–83.

    Article  CAS  Google Scholar 

  48. Liang H, Yu D. Mechanical and thermal properties of (Ag/C nanocable)/epoxy resin composites. Polym Sci Ser B. 2011;53(11):601–5.

    Article  CAS  Google Scholar 

  49. Hu Y, Shen J, Li N, Ma H, Shi M, Yan B, Huang W, Wang W, Ye M. Comparison of the thermal properties between composites reinforced by raw and amino-functionalized carbon materials. Comp Sci and Tech. 2010;70:2176–82.

    Article  CAS  Google Scholar 

  50. Guo B, Wan J, Lei Y, Jia D. Curing behaviour of epoxy resin/graphite composites containing ionic liquid. J Phys D. 2009;42:145307–14.

    Article  Google Scholar 

  51. Yung KC, Liem H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J Appl Polym Sci. 2007;106:3587–91.

    Article  CAS  Google Scholar 

  52. Bortz DR, Heras EG, Martin-Gullon I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules. 2012;45:238–45.

    Article  CAS  Google Scholar 

  53. Qiu SL, Wand CS, Wang YT, Liu CG, Chen XY, Xie HF, Huang YA, Cheng RS. Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. eXPRESS Polym Lett. 2011;5(9):809–18.

    Article  CAS  Google Scholar 

  54. Huang H, Zhi C, Jiang P, Golberg D. Bando Y, Tanaka T. Adv Funct Mater: Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity; 2012.

    Google Scholar 

  55. Liu Q, Zhou X, Fan X, Zhu C, Yao X, Liu Z. Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. Polym -Plast Tech Eng. 2012;51:251–6.

    Article  CAS  Google Scholar 

  56. Shen XJ, Pei XQ, Fu SY, Friedrich K. Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content. Polymer. 2013;54:1234–42.

    Article  CAS  Google Scholar 

  57. Cui HW, Fan Q, Li DS, Tang X. Formulation and characterization of electrically conductive adhesives for electronic packaging. J Adhes. 2013;89:19–36.

    Article  CAS  Google Scholar 

  58. Suriati G, Mariatti M, Azizan A. Effects of filler shape and size on the properties of silver filled epoxy composite for electronic applications. J Mater Sci. 2011;22:56–63.

    CAS  Google Scholar 

  59. Monti M, Rallini M, Puglia D, Peponi L, Torre L, Kenny JM. Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Compos A. 2013;46:166–72.

    Article  CAS  Google Scholar 

  60. Kim K-S, Jeon I-Y, Ahn S-N, Kwon Y-D, Baek J-B. Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin. J Mater Chem. 2011;21:7337.

    Article  CAS  Google Scholar 

  61. Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem. 2011;21:13290.

    Article  CAS  Google Scholar 

  62. Corcione E, Freuli F, Maffezzoli A. The aspect ratio of epoxy matrix nanocomposites reinforced with graphene stacks. Polym Eng Sci. 2012. doi:10.1002/pen.

    Google Scholar 

  63. Zaman I, Kuan HC, Meng Q, Michelmore A, Kawashima N, Pitt T, Zhang L, Gouda S, Luong L, Ma J. A facile approach to chemically modified graphene and its polymer nanocomposites. Adv Funct Mater. 2012;22:2735–43.

    Article  CAS  Google Scholar 

  64. Ren H, Tang S, Syed JA, Meng X. Incorporation of silver nanoparticles coated with mercaptosuccinic acid/poly(ethylene glycol) copolymer into epoxy for enhancement of dielectric properties. Mater Chem and Phys. 2012;137:673–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Grant program for this research study is gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff Rivers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivers, G., Rogalsky, A., Lee-Sullivan, P. et al. Thermal analysis of epoxy-based nanocomposites: Have solvent effects been overlooked?. J Therm Anal Calorim 119, 797–805 (2015). https://doi.org/10.1007/s10973-013-3613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3613-2

Keywords

Navigation