Skip to main content
Log in

Characterization of MWCNT/TPU systems by large amplitude oscillation shear

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Interest in polymeric materials with dispersed nanotubes has increased in recent years. There are several methods to characterize this kind of dispersions that may be based on evaluating the percolation concentration, the “goodness” of the dispersion, or the matrix-nanotube interphase. Among other techniques, rheology and conductivity are used to this aim. Commonly, the oscillatory rheology measurements are performed within the linear viscoelastic range, which is achieved by operating at small amplitude oscillation shear. Nevertheless, these measurements do not fully describe the behavior of the dispersion structure. In this work, we propose the use of medium amplitude oscillation shear and large amplitude oscillation shear to characterize the dispersion/structure of a thermoplastic polyurethane matrix filled with multiwalled carbon nanotubes. The Ewoldt framework mathematical approach is used to analyze the non-linear stress response. That approach allows obtaining physically grounded magnitudes from the experimental data. These magnitudes allow for a better understanding of the effects of the filler content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wetzel B, Haupert F, Zhang MQ. Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol. 2003;63:2055–206.

    Article  CAS  Google Scholar 

  2. Park JH, Jana SC. The relationship between nano-and micro-structures and mechanical properties in PMMA-epoxy-nanoclay composites. Polymer. 2003;44:2091–100.

    Article  CAS  Google Scholar 

  3. Han J, Cho K. Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range. J Mater Sci. 2006;41:4239–45.

    Article  CAS  Google Scholar 

  4. Drzal LT, Rich MJ, Koenig MF, Lloyd PF. Adhesion of graphite fibers to epoxy matrices: II. The effect of fiber finish. J Adhes. 1983;16:133–52.

    Article  CAS  Google Scholar 

  5. Schadler LS. Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS, Braun PV, editors. Nanocomposite science and technology. Weinheim: Wiley; 2003. p. 77–135.

    Chapter  Google Scholar 

  6. Xia H, Song M. Preparation and characterization of polyurethane–carbon nanotube composites. Soft Matter. 2005;1:386–94.

    Article  CAS  Google Scholar 

  7. Xia H, Song M. Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites. J Mater Chem. 2006;16:1843–51.

    Article  CAS  Google Scholar 

  8. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater. 2004;3:115–20.

    Article  CAS  Google Scholar 

  9. Cho JW, Kim JW, Jung YC, Goo NS. Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun. 2005;26:412–6.

    Article  CAS  Google Scholar 

  10. Fernandez I, Santamaría A, Muñoz ME, Castell P. A rheological analysis of interactions in phenoxy/organoclay nanocomposites. Eur Polym J. 2007;43(8):3171–6.

    Article  CAS  Google Scholar 

  11. Hyun K, Kim SH, Ahn KH, Lee SJ. Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newton Fluid Mech. 2002;107(1–3):51–65.

    Article  CAS  Google Scholar 

  12. Wilhelm M, Maring D, Spiess H-W. Fourier-transform rheology. Rheol Acta. 1998;37(4):399–405.

    Article  CAS  Google Scholar 

  13. Wilhelm M, Reinheimer P, Ortseifer M. High sensitivity Fourier-transform rheology. Rheol Acta. 1999;38(4):349–56.

    Article  CAS  Google Scholar 

  14. Ewoldt RH, Winter P, Maxey J, McKinley GH. Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta. 2010;49(2):191–212.

    Article  CAS  Google Scholar 

  15. Ewoldt RH, Hosoi AE, McKinley GH. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol. 2008;52(6):1427.

    Article  CAS  Google Scholar 

  16. Tarrío-Saavedra J, Gracia-Fernández C, López-Beceiro J, Naya S, Artiaga R. TMDSC phase angle for a better nanocomposite interphase identification. J Therm Anal Calorim. 2012;109:1277–84.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Spanish Ministerio de Educacion y Ciencia MTM2011-22393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Artiaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gracia-Fernandez, C., Gómez-Barreiro, S., López-Beceiro, J. et al. Characterization of MWCNT/TPU systems by large amplitude oscillation shear. J Therm Anal Calorim 115, 1727–1731 (2014). https://doi.org/10.1007/s10973-013-3402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3402-y

Keywords

Navigation