Skip to main content
Log in

Calorimetric, conductometric and density measurements of iteratively filtered water using 450, 200, 100 and 25 nm Millipore filters

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study presents some experimental results on the variation of the physico-chemical properties of pure MilliQ water, when subjected to a procedure of iterated filtration through Millipore filters with porosity ranging from 450 to 25 nm. The parameters measured were: calorimetry, electrical conductivity, density, and pH. Release of chemical impurities can be ruled out due to the nature of the materials used. As in the case of iteratively filtered water prepared using Pyrex glass filters, the specific electrical conductivity and the pH were found to increase with increasing number of iterations. There was also a dependence on the average pore size of the filters. The idea of water as a system capable of self-organization triggered by various perturbations (mechanical and/or electromagnetic) is gaining momentum. It responds to such perturbations by forming dissipative structures, i.e., far-from-equilibrium systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Robinson GW, Cho CH, Gellene GI. Refractive index mysteries of water. J Phys Chem B. 2000;104:7179–82.

    Article  CAS  Google Scholar 

  2. Gregory JK, Clary DC, Liu K, Brown MG, Saykally RJ. The water dipole moment in water clusters. Science. 1997;275:814–7.

    Article  CAS  Google Scholar 

  3. Errington JR, Debenedetti PG. Relationship between structural order and the anomalies of liquid water. Nature. 2001;409:318–21.

    Article  CAS  Google Scholar 

  4. Ball P. Water: water-an enduring mystery. Nature. 2008;452:291–2.

    Article  CAS  Google Scholar 

  5. Lobyshev VI, Shikhlinskaya RE, Ryzhikov BD. Experimental evidence for intrinsic luminescence of water. J Mol Liq. 1999;82:73–81.

    Article  CAS  Google Scholar 

  6. Lobyshev VI, Solovey AB, Bulienkov NA. Computer construction of modular structures of water. J Mol Liq. 2003;106:277–97.

    Article  CAS  Google Scholar 

  7. Samal S, Geckeler KE. Unexpected solute aggregation in water on dilution. Chem Commun. 2001;21:2224–5.

    Article  Google Scholar 

  8. Lo SY, Xu G, Gann D. Evidence for the existence of stable-water-clusters at room temperature and normal pressure. Phys Lett A. 2009;373:3872–6.

    Article  CAS  Google Scholar 

  9. Rey L. Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Phys A. 2003;323:67–74.

    Article  CAS  Google Scholar 

  10. Elia V, Marrari L, Napoli E. Aqueous nanostructures in water induced by electromagnetic field emitted by EDS. A conductometric study of fullerene and carbon nanotube EDS. J Therm Anal Calorim. 2012;107:843–51.

    Article  CAS  Google Scholar 

  11. Elia V, Napoli E, Niccoli M. Physical–chemical study of water in contact with a hydrophilic polymer: Nafion. J Therm Anal Calorim. 2012; doi:10.1007/s10973-012-2576-z.

  12. Elia V, Napoli E, Niccoli M. On the stability of extremely diluted solutions to temperature. J Therm Anal Calorim. 2012; doi:10.1007/s10973-012-2799-z.

  13. Elia V, Napoli E, Niccoli M. Thermodynamic parameters for the binding process of the OH ion with the dissipative structures. Calorimetric and conductometric titrations. J Therm Anal Calorim. 2010;102:1111–8.

    Article  CAS  Google Scholar 

  14. Elia V, Elia L, Marchettini N, Napoli E, Niccoli M, Tiezzi E. Physico-chemical properties of aqueous extremely diluted solutions in relation to ageing. J Therm Anal Calorim. 2008;93:1003–11.

    Article  CAS  Google Scholar 

  15. Elia V, Napoli E, Niccoli M. On the stability of extremely diluted aqueous solutions at the high ionic strength. A calorimetric study at 298 K. J Therm Anal Calorim. 2008;92:643–8.

    Article  CAS  Google Scholar 

  16. Belon P, Elia V, Elia L, Montanino M, Napoli E, Niccoli M. Conductometric and calorimetric studies of the diluted and agitated solutions. On the combined anomalous effect of time and volume parameters. J Therm Anal Calorim. 2008;93:459–69.

    Article  CAS  Google Scholar 

  17. Elia V, Napoli E, Niccoli M, Marchettini N, Tiezzi E. New physico-chemical properties of extremely dilute solutions. A conductivity study at 25 °C in relation to ageing. J Solut Chem. 2008;37:85–96.

    Article  CAS  Google Scholar 

  18. Elia V, Niccoli M. Thermodynamics of extremely dilute aqueous solutions. Ann N Y Acad Sci. 1999;879:241–8.

    Article  CAS  Google Scholar 

  19. Elia V, Niccoli M. New physico-chemical properties of water induced by mechanical treatments. J Therm Anal Calorim. 2000;61:527–37.

    Article  CAS  Google Scholar 

  20. Elia V, Niccoli M. New physico-chemical properties of extremely diluted solutions. J Therm Anal Calorim. 2004;75:815–36.

    Article  CAS  Google Scholar 

  21. Elia V, Elia L, Napoli E, Niccoli M. Conductometric and calorimetric studies of serially diluted and agitated solutions: the dependence of intensive parameters on volume. Int J Ecodyn. 2007;1:361–72.

    Article  Google Scholar 

  22. Elia V, Marchettini N, Napoli E, Tiezzi E. Nanostructures of water molecules in Iteratively Filtered Water. J Opt Adv Mater (in press).

  23. Elia V, Napoli E. Nanostructures of water molecules in iteratively filtered water. Key Eng Mater. 2012;495:37–40.

    Article  Google Scholar 

  24. Cattaneo TMP, Vero S, Napoli E, Elia V. Influence of filtration processes on aqueous nanostructures by NIR spectroscopy. J Chem Chem Eng. 2011;5:1046–52.

    CAS  Google Scholar 

  25. Elia V, Napoli E, Niccoli M. Calorimetric and conductometric titrations of nanostructures of water molecules in Iteratively Filtered Water. J Therm Anal Calorim. 2013;111:815–21.

    Article  CAS  Google Scholar 

  26. Montagnier L, Aissa J, Ferris S, Montagnier J, Lavallée C. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA Sequences. Interdiscipl Sci Comput Life Sci. 2009;1:81–90.

    Article  CAS  Google Scholar 

  27. Prigogine I. Time, structure and fluctuations. Nobel Lecture; 1977.

  28. Prigogine I. La fin des certitudes. In: Odile Jacob editor. Temps, chaos et les lois de la nature. Paris; 1966.

  29. Nicolis G. Physics of far-equilibrium systems and self-organization. In: Davies P, editor. The new physics. New York: Cambridge University Press; 1989.

    Google Scholar 

  30. Marchettini N, Del Giudice E, Voeikov V, Tiezzi E. Water: a medium where dissipative structures are produced by coherent dynamics. J Theor Biol. 2010;265:511–6.

    Article  CAS  Google Scholar 

  31. Yinnon T A, Elia V. Dynamics in perturbed very dilute aqueous solutions: theory and experimental evidence. Int J Mod Phys B. 2013; doi:10.1142/S0217979243500057.

  32. De Grotthuss CJT. Sur la dècomposition de l’eau et des corps qu’uelle tient en dissolution à l’aid del l’èlectricitè galvanique. Ann Chim LVIII. 1806;58:54–74.

    Google Scholar 

  33. Gileadi E, Kirowa EE. Electrolytic conductivity: the hopping mechanism of the proton and beyond. Electrochim Acta. 2006;51:6003–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Elia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elia, V., Marchettini, N., Napoli, E. et al. Calorimetric, conductometric and density measurements of iteratively filtered water using 450, 200, 100 and 25 nm Millipore filters. J Therm Anal Calorim 114, 927–936 (2013). https://doi.org/10.1007/s10973-013-3046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3046-y

Keywords

Navigation