Skip to main content
Log in

Fiber crystal growth from the melt for non-linear optical applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

During several years, we have been involved in the growth and characterization of non-linear optical crystals by the two most common techniques for growing single-crystal fibers from the melt: laser-heated pedestal growth and micro-pulling down. Their specific features are presented in this study and their versatility is demonstrated through two typical examples of incongruently melting materials: K3Li2−xNb5+xO15+2x (solid solution of the ternary system K2O–Li2O–Nb2O5) and Ca5(BO3)3F which can only be grown from a flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Feigelson RS. The laser-heated pedestal growth method: a powerful tool in the search for new high performance laser crystals. Springer Ser Opt Sci. 1985;47:129–42.

    CAS  Google Scholar 

  2. Feigelson RS. Pulling optical fibers. J Cryst Growth. 1986;79:669–80.

    Article  CAS  Google Scholar 

  3. Yoon DH, Yonenaga I, Fukuda T, Onishi N. Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method. J Cryst Growth. 1994;142:339–43.

    Article  CAS  Google Scholar 

  4. Fejer MM, Byer RL, Feigelson RS, Kway W. Growth and characterization of single crystal refractory oxide fibers. Proc SPIE Adv Infrared Series II. 1982;320:50–5.

    Article  CAS  Google Scholar 

  5. Fejer MM, Nightingale JL, Magel GA, Byer RL. Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers. Rev Sci Instrum. 1984;55:1791–6.

    Article  CAS  Google Scholar 

  6. Fejer MM. PhD Thesis, Stanford University, California, 1986.

  7. Rudolph P, Fukuda T. Fiber crystal growth from the melt. Cryst Res Technol. 1999;34:3–40.

    Article  CAS  Google Scholar 

  8. Yoshikawa A, Chani V. Growth of optical crystals by the micro-pulling down method. MRS Bull. 2009;34:266–70.

    Article  CAS  Google Scholar 

  9. Imaeda M, Imai K. K3Li2Nb5O15 fiber and plate crystals. In: Fukuda T, Chani V, editors. Advances in materials research. Springer; 2007. pp. 219–28.

  10. Burton JM, Prim RC, Slichter WP. The distribution of solute in crystals grown from the melt. I. Theoretical. J Chem Phys. 1953;21:1987–91.

    Article  CAS  Google Scholar 

  11. Uda S, Kon J, Shimamura K, Fukuda T. Analysis of Ge distribution in Si1−x Ge x single crystal fibers by the micro-pulling down method. J Cryst Growth. 1996;167:64–73.

    Article  CAS  Google Scholar 

  12. Dmitriev VG, Gurzadyan GG, Nikogosyan DN. Handbook of nonlinear optical crystals. 3rd edn. Springer-Verlag; 1999.

  13. Ferriol M, Cochez M, Aillerie M. Ternary system Li2O–K2O–Nb2O5: Re-examination of the 30 mol% K2O isopleth and growth of fully stoichiometric potassium lithium niobate single crystals by the micro-pulling down technique. J Cryst Growth. 2009;311:4343–9.

    Article  CAS  Google Scholar 

  14. Fortin W, Kugel GE, Rytz D. Effects of nonstoichiometry on Raman spectra of K6Li4Nb10O30 (KLN) compounds. Ferroelectrics. 1997;202:131–8.

    Article  CAS  Google Scholar 

  15. Xu K, Loiseau P, Aka G, Lejay J. A new promising nonlinear optical crystal for ultraviolet light generation: Ca5(BO3)3F. Cryst Growth Des. 2009;9:2235.

    Article  CAS  Google Scholar 

  16. Chen G, Wu Y, Fu P. Growth and characterization of a new nonlinera optical crystal Ca5(BO3)3F. J Cryst Growth. 2006;292:449.

    Article  CAS  Google Scholar 

  17. Kozhaya N, Ferriol M, Cochez M, Aillerie M. Growth of single-crystal fibers for non-linear optical applications using the micro-pulling down technique (μ-PD). In: Ferriol M, Cochez M, Aillerie M, editors. XXXVII JEEP—37th Conference on Phase Equilibria proceedings. EDP Sciences (www.jeep-proceedings.org); 2011. doi:10.1051/jeep/201100003.

  18. Epelbaum BM, Schierning G, Winnacker A. Modification of the micro-pulling-down method for high-temperature solution growth of miniature bulk crystals. J Cryst Growth. 2005;275:e867.

    Article  CAS  Google Scholar 

  19. Chani VI, Shimamura K, Fukuda T. Flux growth of KNbO3 crystals by pulling-down method. Cryst Res Technol. 1999;34:519.

    Article  CAS  Google Scholar 

  20. El Hassouni A. Growth, structural characterization and spectroscopic analysis of single crystal fibers of the niobate family LiNbO3 (LN), Ba2NaNb5O15 (BNN) and SrxBa1-xNb2O6 (SBN) with nonlinear properties, PhD Thesis. University Claude Bernard Lyon I; 2004. pp. 87.

  21. Ganschow S, Klimm D, Epelbaum BM, Yoshikawa A, Doerschel J, Fukuda T. Growth conditions and composition of terbium aluminium garnet single crystals grown by the micro pulling down technique. J Cryst Growth. 2001;225:454.

    Article  CAS  Google Scholar 

  22. Xu D, Zhang KC, Zhang LH. Science and technology of crystal growth. Beijing: Science Press; 1997.

    Google Scholar 

  23. Kozhaya N, Ferriol M, Cochez M, Aillerie M, Maillard A. Growth and characterization of Ca5(BO3)3F fiber crystals, a new nonlinear optical material for UV light generation. Opt Mater. 2011;33:1621.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Ferriol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferriol, M., Cochez, M. Fiber crystal growth from the melt for non-linear optical applications. J Therm Anal Calorim 112, 255–262 (2013). https://doi.org/10.1007/s10973-012-2836-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2836-y

Keywords

Navigation