Skip to main content
Log in

Exploring antibiotic resistant mechanism by microcalorimetry

Determination of thermokinetic parameters of metallo-β-lactamase L1 catalyzing penicillin G hydrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In an effort to probe the reaction of antibiotic hydrolysis catalyzed by B3 metallo-β-lactamase (MβL), the thermodynamic parameters of penicillin G hydrolysis catalyzed by MβL L1 from Stenotrophomonas maltophilia were determined by microcalorimetric method. The values of activation free energy ΔG θ are 88.26, 89.44, 90.49, and 91.57 kJ mol−1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, activation enthalpy ΔH θ is 24.02 kJ mol−1, activation entropy ΔS θ is −219.2511 J mol−1 K−1, apparent activation energy E is 26.5183 kJ mol−1, and the reaction order is 1.0. The thermodynamic parameters reveal that the penicillin G hydrolysis catalyzed by MβL L1 is an exothermic and spontaneous reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wang Z, Fast W, Valentine AM, Benkovic SJ. Metallo-beta-lactamase: structure and mechanism. Curr Opin Chem Biol. 1999;3(5):614–22.

    Article  CAS  Google Scholar 

  2. Krishna B. New Delhi metallo-beta-lactamases: a wake-up call for microbiologists. Indian J Med Microbiol. 2010;28(3):265–6.

    Article  CAS  Google Scholar 

  3. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597–602.

    Article  CAS  Google Scholar 

  4. Anzellotti A, Farrell N. Zinc metalloproteins as medicinal targets. Chem Soc Rev. 2008;37(8):1629–51.

    Article  CAS  Google Scholar 

  5. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325(5944):1089–93.

    Article  CAS  Google Scholar 

  6. Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev. 2005;105(2):395–424.

    Article  CAS  Google Scholar 

  7. Bush K, Jacoby GA. Updated functional classification of {beta}-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.

    Article  CAS  Google Scholar 

  8. Crowder MW, Spencer J, Vila AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res. 2006;39(10):721–8.

    Article  CAS  Google Scholar 

  9. Garrity JD, Carenbauer AL, Herron LR, Crowder MW. Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis. J Biol Chem. 2004;279(2):920–7.

    Article  CAS  Google Scholar 

  10. Hu Z, Spadafora LJ, Hajdin CE, Bennett B, Crowder MW. Structure and mechanism of copper- and nickel-substituted analogues of metallo-beta-lactamase L1. Biochemistry. 2009;48(13):2981–9.

    Article  CAS  Google Scholar 

  11. Carenbauer AL, Garrity JD, Periyannan G, Yates RB, Crowder MW. Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. BMC Biochem. 2002;3:4–16.

    Article  Google Scholar 

  12. Crowder MW, Walsh TR, Banovic L, Pettit M, Spencer J. Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1998;42(4):921–6.

    CAS  Google Scholar 

  13. LeBlond C, Wang J, Larsen RD, Orella CJ, Forman AL, Landau RN, et al. Reaction calorimetry as an in situ kinetic tool for characterizing complex reactions. Thermochim Acta. 1996;289(2):189–207.

    Article  CAS  Google Scholar 

  14. Kong W, Li Z, Xiao X, Zhao Y, Zhang P. Activity of berberine on Shigella dysenteriae investigated by microcalorimetry and multivariate analysis. J Therm Anal Calorim. 2010;102(1):331–6.

    Article  CAS  Google Scholar 

  15. Zhao Y, Wang J, Shan L, Li R, Yan D, Xiao X. Activity of ginsenoside Rh on the growth of mice splenic lymphocytes investigated by microcalorimetry and factor analysis. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-1146-5.

  16. Dragoi B, Rakic V, Dumitriu E, Auroux A. Adsorption of organic pollutants over microporous solids investigated by microcalorimetry techniques. J Therm Anal Calorim. 2010;99(3):733–40.

    Article  CAS  Google Scholar 

  17. Zhao Y, Yan D, Wang J, Zhang P, Xiao X. Anti-fungal effect of berberine on Candida albicans by microcalorimetry with correspondence analysis. J Therm Anal Calorim. 2010;102(1):49–55.

    Article  CAS  Google Scholar 

  18. Wang J, Cheng D, Zeng N, Xia H, Fu Y, Yan D, et al. Application of microcalorimetry and principal component analysis. J Therm Anal Calorim. 2010;102(1):137–42.

    Article  CAS  Google Scholar 

  19. Yang L, Sun L, Xu F, Zhang J, Zhao J, Zhao Z. Inhibitory study of two cephalosporins on E. coli by microcalorimetry. J Therm Anal Calorim. 2010;100(2):589–92.

    Article  CAS  Google Scholar 

  20. Lago N, Legido J, Paz Andrade M, Arias I, Casás L. Microcalorimetric study on the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-1175-0.

  21. López-Fonseca R, Landa I, Elizundia U, Gutiérrez-Ortiz MA, González-Velasco JR. Thermokinetic modeling of the combustion of carbonaceous particulate matter. Combust Flame. 2006;144(1–2):398–406.

    Article  Google Scholar 

  22. Völker S, Rieckmann T. Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results. J Anal Appl Pyrolysis. 2002;62(2):165–77.

    Article  Google Scholar 

  23. Illeková E, Svec P, Miglierini M. Thermokinetic analysis of the multistep crystallization of a NANOPERM-type ribbon. J Non-Cryst Solids. 2007;353(32–40):3342–7.

    Article  Google Scholar 

  24. Bouchoux G, Buisson DA. Gas phase basicity of X(CH2)3Y(X, Y = OH, NH2) by the thermokinetic method. Int J Mass Spectrom. 2006;249–250:412–9.

    Google Scholar 

  25. Ji M, Liu M, Gao S, Shi Q. A new microcalorimeter for measuring thermal effects. Instrum Sci Technol. 2001;29(1):53–7.

    Article  CAS  Google Scholar 

  26. Marthada V. The enthalpy of solution of SRM 1655 (KCl) in H2O. J Res NBS Standards. 1980;85(6):467–74.

    Google Scholar 

  27. Hu Z, Periyannan G, Bennett B, Crowder MW. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1. J Am Chem Soc. 2008;130(43):14207–16.

    Article  CAS  Google Scholar 

  28. Gao S, Chen S, Hu R, Li H, Shi Q. Derivation and application of thermodynamic equations. Chin J Inorg Chem. 2002;18(4):362–6.

    CAS  Google Scholar 

  29. Liu J-S, Zeng X-C, Tian A-M, Deng Y. Application of a reduced-extent method to thermokinetic studies of enzyme-catalyzed reactions. Thermochim Acta. 1995;253:275–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (to K. W. Y) from National Natural Science Fund of China (20972127), Doctoral Fund of China (200806970005), Natural Science Fund of Shaanxi Province (2009JM2002) and Key Fund for International Cooperation of Shaanxi Province (2010KW-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Wu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, HZ., Yang, Q., Yan, XY. et al. Exploring antibiotic resistant mechanism by microcalorimetry. J Therm Anal Calorim 107, 321–324 (2012). https://doi.org/10.1007/s10973-011-1362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1362-7

Keywords

Navigation