Skip to main content
Log in

Comparisons of MWCNTs and acidified process by HNO3 on thermal stability by DSC and TG-FTIR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) have remarkable properties. However, their thermal stability characteristics, which may represent potential hazards during the production or utilization stage, concern unsafe or unknown properties researches. Our aim was to analyze the thermokinetic parameters of different heating rates by differential scanning calorimetry (DSC) and thermogravimetric analyzer (TG), and then to compare thermal decomposition energy parameters under various conditions by well-known kinetic equations. MWCNTs were acidified via nitric acid (HNO3) in various concentrations from 3 to 15 N and were characterized by means of Fourier transform infrared (FTIR) spectrometry. For original and modified MWCNTs, we further identified the thermal degradation characteristics of the functional group by TG-FTIR. Finally, we established an effective and prompt procedure for receiving information on thermal decomposition characteristics and reaction hazard of MWCNTs that could be applied as an inherently safer design during normal or upset operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Frequency factor (min−1)

dT/dt :

Self-heating rate (°C min−1)

E a :

Activation energy (kJ mol−1)

H 0 :

Initial heat flow (kJ mol−1)

H T :

Heat flow at temperature T (kJ mol−1)

k 0 :

Reaction rate constant (s−1 M1−n)

m :

Mass of reactant (g)

n :

Reaction order (dimensionless)

R :

Universal gas constant (J mol−1 K−1)

T :

Temperature (°C)

t :

Time (min)

T 0 :

Initial exothermic temperature (°C)

T m :

Temperature to maximum of weight loss percentage (°C)

T p :

Peak temperature (°C)

V :

Volume of reactant (L)

α:

Fractional conversion (dimensionless)

β:

Heating rate (°C min−1)

ρ:

Density of reactant (g L−1)

ΔH :

Heat of reaction (kJ mol−1)

ΔH 0 :

Total peak area of DSC curve (kJ mol−1)

ΔH d :

Heat of decomposition (kJ mol−1)

ΔH T :

Heat of decomposition via DSC trial (kJ mol−1)

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  CAS  Google Scholar 

  2. Lu C, Chung YL, Chang KF. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res. 2005;39:1183–9.

    Article  CAS  Google Scholar 

  3. Pritchard DK. Literature review–explosion hazards associated with nanopowders. USA: Crown; 2004.

  4. Jin J, Song M, Pan F. A DSC study of effect of carbon nanotubes on crystallization behaviour of poly (ethylene oxide). Thermochim Acta. 2007;456:25–31.

    Article  CAS  Google Scholar 

  5. Chervin S, Bodman GT. Mechanism and kinetics of decomposition from isothermal DSC data: development and application. Process Saf Prog. 1997;16:94–100.

    Article  Google Scholar 

  6. Wang YW, Shu CM, Duh YS, Kao CS. Thermal runaway hazards of cumene hydroperoxide with contaminants. Ind Eng Chem Res. 2001;40:1125–32.

    Article  CAS  Google Scholar 

  7. Shu CM, Yang YJ. Using VSP2 to separate catalytic and self-decomposition reactions for hydrogen peroxide in the presence of hydrochloric acid, temperatures and oxygen concentrations. Thermochim Acta. 2002;392:257–69.

    Google Scholar 

  8. Hsieh YC, Chou YC, Lin CP, Hsieh TF, Shu CM. Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation. Aerosol Air Qual Res. 2010;10:212–8.

    CAS  Google Scholar 

  9. Chang CW, Chou YC, Tseng JM, Liu MY, Shu CM. Thermal hazard evaluation of carbon nanotubes with sulfuric acid by DSC. J Therm Anal Calorim. 2008;95(2):639–43.

    Article  Google Scholar 

  10. Peng JJ, Wu SH, Hou HY, Lin CP, Shu CM. Thermal hazards evaluation of cumene hydroperoxide mixed with its derivatives. J Therm Anal Calorim. 2009;96:783–7.

    Article  CAS  Google Scholar 

  11. Hou HY, Duh YS, Lee W, Shu CM. Hazard evaluation for redox system of cumene hydroperoxide mixed with inorganic alkaline solutions. J Therm Anal Calorim. 2009;95:541–5.

    Article  CAS  Google Scholar 

  12. Paradise M, Goswami T. Carbon nanotubes—production and industrial applications. Mater Des. 2007;28:1477–89.

    CAS  Google Scholar 

  13. Mettler Toledo. STARe Thermal Analysis. Sweden; 2005.

  14. Perkin Elmer. Pyris 1 Getting Started Guide. UK; 2006.

  15. Perkin Elmer. SPECTRUM 100 Series Getting Started Guide. UK; 2006.

  16. MWCNTs 2040 COA. Conyuan Biochemical Technology Co. Ltd., Taipei, Taiwan, ROC. http://www.cbt.com.tw.

  17. Berber S, Kwon YK, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84(20):4613–6.

    Article  CAS  Google Scholar 

  18. Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):225502-1–4.

    Article  Google Scholar 

  19. Xie H, Cai A, Wang X. Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys Lett A. 2007;369:120–3.

    Article  CAS  Google Scholar 

  20. Çengel YA, Boles MA. Thermodynamics: an engineering approach. 6th ed. New York: McGraw-Hill Inc.; 2007.

    Google Scholar 

  21. Qi X, Boggs S. Thermal and mechanical properties of EPR and XLPE cable compounds. IEEE Electr Insul Mag. 2006;22(3):19–24.

    Article  CAS  Google Scholar 

  22. Jung YS, Jeon DY. Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition. Appl Surf Sci. 2002;193:129–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the donors of the National Science Council of Taiwan under the contract no. NSC 97-2622-E-224-002-CC3 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Min Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, YC., Hsieh, TF., Hsieh, YC. et al. Comparisons of MWCNTs and acidified process by HNO3 on thermal stability by DSC and TG-FTIR. J Therm Anal Calorim 102, 641–646 (2010). https://doi.org/10.1007/s10973-010-1017-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1017-0

Keywords

Navigation