Skip to main content
Log in

Correlations between the morphology and the thermo-mechanical properties in poly(vinyl acetate)/epoxy thermosets

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The mechanical properties of poly(vinyl acetate) (PVAc)/epoxy thermosets as a function of the PVAc content were investigated through dynamic mechanical thermal analysis from −100 to 220 °C and through tensile tests at room temperature. The morphology of the thermosets was examined by scanning electron microscopy. Cured PVAc/epoxy blends are phase separated, arising two phases that correspond to a PVAc-rich phase and to the epoxy rich-phase. The morphology evolves from nodular to inverted as the PVAc content increases. Intermediate compositions present combined morphologies, in which nodular and inverted regions are detected. The tensile properties at room temperature reveal that combined morphologies present the most ductile behaviour. The glass transition temperatures (T g) of PVAc and of epoxy phases in the blends are different from those of the neat polymers. The profile of the loss modulus (E″)–temperature curves are correlated with the change in morphology that appears increasing the PVAc content. The storage modulus (E′)–temperature curves are highly dependent on the morphology of the samples. The E′-composition dependence is predicted using several models for two-phase composites. The low-temperature β-relaxation of the epoxy is slightly modified by the presence of PVAc. The activation energies of the α and β-relaxations are not dependent on the blend morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pascault JP, Williams RJJ. Formulation and characterization of thermoset-thermoplastic blends. In: Paul DR, Bucknall CB, editors. Polymer blends. New York: Wiley; 2000. p. 379–415.

    Google Scholar 

  2. Johnsen BB, Kinloch AJ, Taylor AC. Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms. Polymer. 2005;46:7352–69.

    Article  CAS  Google Scholar 

  3. Thomas R, Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, Moldenaers P, Thomas S. Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin—effects of liquid rubber inclusion. Polymer. 2007;48:1695–710.

    Article  CAS  Google Scholar 

  4. Peña G, Eceiza A, Valea A, Remiro P, Oyanguren P, Mondragón I. Control of morphologies and mechanical properties of thermoplastics-modified epoxy matrices by addition of a second thermoplastic. Polym Int. 2003;52:1444–53.

    Article  Google Scholar 

  5. López J, Rico M, Montero B, Díez J, Ramirez C. Polymer blends based on an epoxy-amine thermoset and a thermoplastic. Effect of thermoplastic on cure reaction and thermal stability of the system. J Therm Anal Calorim. 2009;95:369–76.

    Article  Google Scholar 

  6. López J, Rico M, Ramirez C, Montero B. Epoxy resin modified with a thermoplastic. Influence of modifier and reaction temperature on the phase separation. J Therm Anal Calorim. 2009. doi:10.2007/s10973-009-0441-5.

  7. Mondragón I, Remiro M, Martin MD, Valea A, Franco M, Bellenguer V. Viscoelastic behaviour of epoxy resins modified with poly(methyl methacrylate). Polym Int. 1998;47:152–8.

    Article  Google Scholar 

  8. Prolongo SG, Salazar A, Ureña A, Rodríguez J. Effect of hydroxyls content on the morphology and properties of epoxy/poly(styrene-co-allyalcohol) blends. Polym Eng Sci. 2007;47:1580–7.

    Article  CAS  Google Scholar 

  9. Prolongo MG, Arribas C, Salom C, Masegosa RM, Dynamic mechanical properties and morphology of poly(benzyl methacrylate) modified epoxy thermoset. Polym Eng Sci. 2009. doi:10.1002/pen.21707.

  10. Heux L, Halary JL, Lauprêtre F, Monnerie L. Dynamic mechanical and 13C n.m.r. investigations of molecular motions involved in the β relaxation of epoxy networks based on DGEBA and aliphatic amines. Polymer. 1997;38:1767–78.

    Article  CAS  Google Scholar 

  11. Sivanlingam G, Karthik R, Madras G. Blends of poly(ε-caprolactone) and vinyl acetate: mechanical properties and thermal degradation. Polym Degrad Stabl. 2004;84:34551.

    Google Scholar 

  12. Lapprand A, Arribas C, Salom C, Masegosa RM, Prolongo MG. Epoxy resins modified with poly(vinyl acetate). J Mater Process Technol. 2003;143–144:827–31.

    Article  Google Scholar 

  13. Sánchez-Cabezudo M, Prolongo MG, Salom C, Masegosa RM. Cure kinetics of epoxy resin and thermoplastic polymer. J Therm Anal Calorim. 2006;86:699–705.

    Article  Google Scholar 

  14. Arribas C, Sepúlveda L, Salom C, Masegosa RM, Prolongo MG. Morphology effect on the hydrothermal ageing of a thermoplastic modified epoxy thermoset. Polym Eng Sci. 2007;47:960–8.

    Article  CAS  Google Scholar 

  15. Prolongo MG, Arribas C, Salom C, Masegosa RM. Phase separation, cure kinetics and morphology in epoxy/poly(vinyl acetate blends). J Appl Polym Sci. 2007;103:1507–16.

    Article  CAS  Google Scholar 

  16. Zheng S, Hu Y, Guo Q, Wei J. Miscibility, morphology and fracture toughness of epoxy/poly(vinyl acetate) blends. Colloid Polym Sci. 1996;274:410–7.

    Article  CAS  Google Scholar 

  17. Oyanguren PA, Galante MJ, Andromaque, Frontini PM, Williams RJJ. Development of bicontinuous morphologies in polysulfone-epoxy blends. Polymer. 1999;40:5249–55.

    Article  CAS  Google Scholar 

  18. Chikhi N, Fellahi S, Bakar M. Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J. 2002;38:251–64.

    Article  CAS  Google Scholar 

  19. Montserrat S, Calventus Y, Hutchinson JM. Effect of cooling rate and frequency on the calorimetric measurement of the glass transition. Polymer. 2005;46:12181–9.

    Article  CAS  Google Scholar 

  20. Verchere D, Pascault JP, Sautereau H, Moschiar SM, Ricardi CC, Williams RJJ. Rubber-modified epoxies. II. Influence of cure schedule and rubber concentration on the generated morphology. J Appl Polym Sci. 1991;42:701–16.

    Article  CAS  Google Scholar 

  21. Fox TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc. 1956;1:123.

    CAS  Google Scholar 

  22. Riande E, Díaz-Calleja R, Prolongo MG, Masegosa RM, Salom C. Polymer viscoelasticity: stress and strain in practice. New York: Marcel Dekker; 2000. p. 283–5.

    Google Scholar 

  23. Deng S, Hou M, Ye L. Temperature dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data. Polym Test. 2007;26:803–13.

    Article  CAS  Google Scholar 

  24. Kerner EH. The elastic and thermo-elastic properties of composite media. Proc Phys Soc Lond B. 1956;69:808–13.

    Article  Google Scholar 

  25. Davies WEA. The elastic constant of a two-phase composite material. J Phys D Appl Phys. 1971;4:1176–81.

    Article  Google Scholar 

  26. Budiansky B. On the elastic moduli of some heterogeneous materials. J Mech Phys Solids. 1965;13:223–7.

    Article  Google Scholar 

  27. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Springer S. Toughening mechanism of nanoparticle-modified epoxy polymers. Polymer. 2007;48:530–41.

    Article  CAS  Google Scholar 

  28. Hourston DJ, Schäfer F, Gradwell MHS, Song M. TMXDI-based poly(etherurethane)/polystyrene interpenetrating polymer networks 2.T g behaviour, mechanical properties and modulus-composition studies. Polymer. 1998;39:5609–17.

    Article  CAS  Google Scholar 

  29. Ryan AJ, Stanford JL, Still RH. Thermal, mechanical and fracture properties of reaction injection-moulded poly(urethane-urea)s. Polymer. 1991;32:1426–39.

    Article  Google Scholar 

  30. Hourston DJ, Schäfer F. Poly(ether urethane)/poly(ethyl methacrylate) interpenetrating polymer networks: morphology, phase continuity and mechanical properties as a function of composition. Polymer. 1996;37:3521–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this study by CAM (S-0505/MAT0227 Interfaces Project) and by MEC (MAT 2006-02123) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Prolongo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Cabezudo, M., Masegosa, R.M., Salom, C. et al. Correlations between the morphology and the thermo-mechanical properties in poly(vinyl acetate)/epoxy thermosets. J Therm Anal Calorim 102, 1025–1033 (2010). https://doi.org/10.1007/s10973-010-0881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0881-y

Keywords

Navigation