Skip to main content
Log in

Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermally stimulated discharge current (TSC) and differential scanning calorimetry (DSC) spectroscopy have been recorded in 25 μm thick samples of pristine polycarbonate (PC) and zinc oxide nano particle-filled polycarbonate. Polycarbonate (PC)/zinc oxide (ZnO) nanocomposites of different mass ratio (e.g., 1, 3, and 5%) were prepared by sol–gel method, followed by film casting. The glass transition temperature of nanocomposite samples increases with increase in concentration of ZnO nano fillers. It is due to the strong interaction between inorganic and organic components. The TSC peaks of nanocomposite and pristine PC indicate the multiple relaxation process. It has been observed that the magnitude of TSC decreases with increase in concentration of nanofillers. The TSC characteristics of 5% filled nanocomposites shows exponential increase of current at higher temperature region. This increase in current is caused by formation of charge-transfer complex between inorganic phase (e.g., ZnO) and organic phase (e.g., PC). Thus, the nano material like zinc oxide transfers the charge carriers from inorganic phase to organic phase rapidly and resultant current increases exponentially. This current is known as leakage current or breakdown current. TSC peak height is observed as a function of the polarizing field. The height of TSC peak increases as the field increases in pristine PC, while TSC peak height is suppressed in nanocomposite samples. This indicates the amount of space charge is smaller in the nanocomposites with a proper addition of ZnO nano fillers than in the pristine PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barabanova AI, Shevnin PL, Pryakhina TA, Bychko KA, Kazantseva V, Zavin BG, et al. Nanocomposites based on epoxy resin and silicon dioxide particles. Polym Sci Ser A. 2008;50:808–19.

    Article  Google Scholar 

  2. Nam JD, Hwang SD, Choi HR, Lee J, Kim KJ, Heo S. Electrostrictive polymer nanocomposites exhibiting tunable electrical properties. Smart Mater Struct. 2005;14:87–90.

    Article  CAS  Google Scholar 

  3. Godovsky DY. Device applications of polymer-nanocomposites. Adv Polym Sci. 2000;153:163–205.

    Article  CAS  Google Scholar 

  4. Lewis TJ. Nanometric dielectrics. IEEE Trans Dielectr Electr Insul. 1994;5:812–25.

    Article  Google Scholar 

  5. Tanaka T, Montanari GC, Mülhaupt R. Polymer nanocomposites as dielectrics and electrical insulation–perspectives for processing technologies, material characterization and future applications. IEEE Trans Dielectr Electr Insul. 2004;11:763–84.

    Article  CAS  Google Scholar 

  6. Zhang C, Mason R, Stevens GC. Dielectric properties of alumina-polymer nanocomposites. Electr Insul Dielectr Phenom. 2005;16:721–4.

    Google Scholar 

  7. Shen Y, Lin YH, Nan CW. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv Funct Mater. 2007;17(14):2405–10.

    Article  CAS  Google Scholar 

  8. Ning H, Masuda Z, Yan C, Yamamoto G, Fukunaga H, Hashida T. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology. 2008;19:215701–10.

    Article  Google Scholar 

  9. Koo JH. Polymer nanocomposites: processing, characterization and application. New York: McGraw-Hill Professional; 2006. p. 33.

    Google Scholar 

  10. Riande E, Daz-Calleja R. Electrical properties of polymers. Boca Raton: CRC Press; 2004. p. 374.

    Book  Google Scholar 

  11. Torres JA, Nealy PF, Pablo DJJ. Molecular simulation of ultrathin polymeric films near the glass transition. Phys Rev Lett. 2000;85:3221–4.

    Article  CAS  Google Scholar 

  12. Forrest JA, Dalnoki-Veress K, Dutcher JR. Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev. 1997;E56:5705–16.

    Google Scholar 

  13. Fukao K, Miyamoto Y. Glass transition temperature and dynamics of α relaxation process in thin polymer films. Europhys Lett. 1999;46:649–54.

    Article  CAS  Google Scholar 

  14. Gaur MS, Shukla P, Tiwari RK, Tanwar A, Singh SP. New approach for the measurement of glass transition temperature of polymer. Ind J Pure Appl Phys. 2008;46:535–9.

    CAS  Google Scholar 

  15. Turnhout JV. Thermally stimulated discharge of electrets. In: Sessler GM, editor. Topics in applied physics (Electrets). Berlin, Heidelberg: Springer-Verlag; 1980.

    Google Scholar 

  16. Richeret R, Blumen A, editors. Disordered effects on relaxation processes. Berlin, Heidelberg: Springer-Verlag; 1994.

    Google Scholar 

  17. Strobl G. The physics of polymers. Berlin, Heidelberg: Springer-Verlag; 1996.

    Book  Google Scholar 

  18. Ibar JP. Do we need a new theory in polymer physics? Polym Rev. 1997;37:389–458.

    Article  Google Scholar 

  19. Bernes A, Martinez JJ, Chatain D, Lacabanne C. Thermally stimulated current spectroscopy for the study of thermoplastics. J Therm Anal Calorim. 1991;37:1795–804.

    Article  CAS  Google Scholar 

  20. Litt MH, Torp S. Strain and temperature dependence of relaxation phenomena in polycarbonate. J Appl Phys. 1973;44:4282–7.

    Article  CAS  Google Scholar 

  21. Kluin JE, Yu Z, Vleeshouwers S, McGervey JD, Jamieson AM, Simha R. Temperature and time dependence of free volume in bisphenol—A polycarbonate studied by positron lifetime spectroscopy temperature and time dependence of free volume in bisphenol A polycarbonate studied by positron lifetime spectroscopy. Macromolecules. 1992;25:5089–93.

    Article  CAS  Google Scholar 

  22. Aoki Y, Brittain JO. Isothermal and nonisothermal dielectric relaxation studies on polycarbonate. J Polym Sci B Polym Phys. 1976;14:1297–302.

    Article  CAS  Google Scholar 

  23. Narula GK, Pillai PKC. Dielectric measurements in an amorphous polymer—Poly(methyl methacrylate). J Polym Sci B Polym Phys. 1990;42:469–72.

    Google Scholar 

  24. Bernes A, Chatain D, Lacabanne C. Thermally stimulated current study of relaxation in glassy polycarbonate. Polymer. 1992;33:4682–6.

    Article  CAS  Google Scholar 

  25. Sauer BB, Avakian P, Howard W, Starkweather Jr. Cooperative relaxations in semicrystalline fluoropolymers studied by thermally stimulated currents and ac dielectric. J Polym Sci B Polym Phys. 1995;34:517–26.

    Article  Google Scholar 

  26. Graeme JP, Michael J, Smith A. Multiple dielectric relaxation processes in an unequilibrated bisphenol-A polycarbonate. Polym Int. 1996;40:239–49.

    Article  Google Scholar 

  27. Delbreilh L, Negahban M, Benzohra M, Lacabanne C, Saiter JM. Glass transition investigated by a combined protocol using thermostimulated depolarization currents and differential scanning calorimetry. J Therm Anal Calorim. 2009;96:865–71.

    Article  CAS  Google Scholar 

  28. Alves NM, Ribelles JLG, Mano JF. Enthalpy relaxation studies in polymethyl methacrylate networks with different crosslinking degrees. Polymer. 2005;46:491–504.

    Article  CAS  Google Scholar 

  29. Bacharan C, Dessaux C, Bernes A, Lacabanne C. Thermally stimulated current spectroscopy of amorphous and semi-crystalline polymers. J Therm Anal Calorim. 1999;56:969–82.

    Article  CAS  Google Scholar 

  30. Rittigstein P, Torkelson JM. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci B Polym Phys. 2006;44:2935–43.

    Article  CAS  Google Scholar 

  31. Wei C, Shrivastava D, Cho K. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett. 2002;2:647–50.

    Article  CAS  Google Scholar 

  32. Chang JH, Seo B, Hwang DH. An exfoliation of organoclay in thermotropic liquid crystalline polyester nanocomposites. Polymer. 2002;43:2969–74.

    Article  CAS  Google Scholar 

  33. Dixit M, Gupta S, Mathur V, Rathore KS, Sharma S, Saxena NS. Study of glass transition temperature of PPMA and CdS-PPMA composite. Chalcogenide Lett. 2009;6:131–6.

    CAS  Google Scholar 

  34. Xu W, Ge M, Pan WP. Glass transition temperature in polyvinyl chloride/monotmorillonite nanocomposite and mechanical properties. J Therm Anal Calorim. 2004;78:1–9.

    Google Scholar 

  35. Binder K, Baschnagel J, Bennemann C, Paul W. Monte Carlo and molecular dynamics simulation of the glass transition of polymers. J Phys Condens Matter. 1999;11:A47–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author M. S. Gaur and Ajaypal Indolia are gratefully acknowledge the financial support of Defence Research Development Organization (DRDO), New Delhi, India (Vide letter no. ERIP/ER/0804419/M/01/1113). We are also thankful to Dr. A. Gupta, Director, UGC-DAE Consortium, Indore for providing DSC facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulayam Singh Gaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, M.S., Rathore, B.S., Singh, P.K. et al. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J Therm Anal Calorim 101, 315–321 (2010). https://doi.org/10.1007/s10973-010-0675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0675-2

Keywords

Navigation