Skip to main content
Log in

Low-temperature heat capacity of L- and DL-phenylglycines

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat capacity of crystalline L- and DL-phenylglycines was measured in the temperature range from 6 to 305 K. For L-phenylglycine, no anomalies in the C p (T) dependence were observed. For DL-phenylglycine, however, an anomaly in the temperature range 50–75 K with a maximum at about 60 K was registered. The enthalpy and the entropy changes corresponding to this anomaly were estimated as 20 J mol−1 and 0.33 J K−1 mol−1, respectively. In the temperature range 205–225 K, an unusually large dispersion of the experimental points and a small change in the slope of the C p (T) curve were noticed. Thermodynamic functions for L- and DL-phenylglycines in the temperature range 0–305 K were calculated. At 298.15 K, the values of heat capacity, entropy, and enthalpy are equal to 179.1, 195.3 J K−1 mol−1, and 28590 J mol−1 for L-phenylglycine and 177.7, 196.3 J K−1 mol−1 and 28570 J mol−1 for DL-phenylglycine. For both L- and DL-phenylglycine, the C p (T) at very low temperatures does not follow the Debye law C T 3. The heat capacity C p (T) is slightly higher for L-phenylglycine, than for the racemic DL-crystal, with the exception of the phase transition region. The difference is smaller than was observed previously for the L-/DL-cysteines, and considerably smaller, than that for L-/DL- serines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Drebushchak VA, Kovalevskaya YuA, Paukov IE, Boldyreva EV. Heat capacity of L- and DL-serine in a temperature range of 5.5 to 300 K. J Therm Anal Calorim. 2007;89(2):649–54.

    Article  CAS  Google Scholar 

  2. Chesalov YuA, Chernobay GB, Boldyreva EV. Temperature effects on the IR spectra of crystalline amino acids, dipeptides, and polyamino acids. II. L- and DL-serines. J Struct Chem. 2008;49:627–38.

    Article  CAS  Google Scholar 

  3. Kolesov BA, Boldyreva EV. Difference in the dynamic properties of chiral and racemic crystals of serine studied by Raman spectroscopy at 3–295 K. J Phys Chem B. 2007;111(51):14387–97.

    Article  CAS  Google Scholar 

  4. Bordallo HN, Kolesov BA, Boldyreva EV, Juranyi F. Different dynamic of chiral and racemic (L- and DL-) serine crystals: Evidenced by incoherent inelastic neutron and Raman scattering. J Am Chem Soc (Commun). 2007;129(36):10984–5.

    Article  CAS  Google Scholar 

  5. Boldyreva EV, Kolesnik EN, Drebushchak TN, Ahsbahs H, Beukes JA, Weber HP. A comparative study of the anisotropy of lattice strain induced in the crystals of L-serine by cooling down to 100 K or by increasing pressure up to 4.4 GPa. Z Kristallogr. 2005;220:58–65.

    Article  CAS  Google Scholar 

  6. Boldyreva EV, Kolesnik EN, Drebushchak TN, Sowa H, Ahsbahs H, Seryotkin YuV. A comparative study of the anisotropy of lattice strain induced in the crystals of DL-serine by cooling down to 100 K or by increasing pressure up to 8.6 GPa. A comparison with L-serine. Z Kristallogr. 2006;221:150–61.

    Article  CAS  Google Scholar 

  7. Kolesnik EN, Goryainov SV, Boldyreva EV. Different behavior of L- and DL-serine crystals at high pressures: Phase transitions in L-serine and stability of the DL-serine structure. Doklady Phys Chem. 2005;404:61–4 (Rus), or 169–72 (Engl).

    Google Scholar 

  8. Moggach SA, Allan DR, Morrison CA, Parsons S, Sawyer L. Effect of pressure on the crystal structure of L-serine-I and the crystal structure of L-serine-II at 5.4 GPa. Acta Cryst B. 2005;61:58–68.

    Article  Google Scholar 

  9. Boldyreva EV, Sowa H, Seryotkin YuV, Drebushchak TN, Ahsbahs H, Chernyshev V, et al. Pressure-induced phase transitions in crystalline L-serine studied by single-crystal and high resolution powder X-ray diffraction. Chem Phys Lett. 2006;429:474–8.

    Article  CAS  Google Scholar 

  10. Drebushchak TN, Sowa H, Seryotkin YuV, Boldyreva EV, Ahsbahs H. L-Serine III at 8.0 GPa. Acta Cryst. 2006;E62:o4052–4.

    CAS  Google Scholar 

  11. Moggach SA, Marshall WG, Parsons S. High-pressure neutron diffraction study of L-serine-I and L-serine-II, and the structure of L-serine-III at 8.1 GPa. Acta Cryst B. 2006;62:815–25.

    Article  Google Scholar 

  12. Paukov IE, Kovalevskaya YuA, Drebushchak VA, Drebushchak TN, Boldyreva EV. An extended phase transition in crystalline L-cysteine near 70 K. J Phys Chem B. 2007;111(31):9186–8.

    Article  CAS  Google Scholar 

  13. Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of L-cysteine. J Therm Anal Calorim. 2008;93:423–8.

    Article  CAS  Google Scholar 

  14. Paukov IE, Kovalevskaya YuA, Boldyreva EV. Low-temperature thermodynamic properties of DL-cysteine. J Therm Anal Calorim. 2010;100:295–301.

    Google Scholar 

  15. Minkov VS, Chesalov YuA, Boldyreva EV. Temperature effects on the IR spectra of crystalline amino acids, dipeptides, and polyamino acids. IV. L-cysteine and DL-cysteine. J Struct Chem. 2008;49:1022–34.

    Article  CAS  Google Scholar 

  16. Kolesov BA, Minkov VS, Boldyreva EV, Drebushchak TN. Phase transitions in the crystalline cysteine on cooling: the role of the intermolecular hydrogen bonds and side-chain motions. 1. L-cysteine. J Phys Chem B. 2008;112:12827–39.

    Article  CAS  Google Scholar 

  17. Minkov VS, Krylov AS, Boldyreva EV, Goryainov SV, Bizyaev SN, Vtyurin AN. Pressure-induced phase transitions in crystalline L- and DL-cysteine. J Phys Chem B Lett. 2008;112:8851–4.

    CAS  Google Scholar 

  18. MinkovVS, Tumanov NA, Kolesov BA, Boldyreva EV. Phase transitions in the crystalline cysteine on cooling: the role of the side-chain motions. 2. DL-cysteine. J Phys Chem B. 2009, in the press.

  19. Sabbah R, Skoulika S. Thermodynamique de composés azotés. Partie VI. Étude thermochimique de la N-phénylglycine et de la d-α-phénylglycine. Thermochim Acta. 1980;36:179–87.

    Article  CAS  Google Scholar 

  20. Paukov IE, Kovalevskaya YuA, Rahmoun NS, Geiger CA. A low-temperature heat capacity study of synthetic anhydrous Mg-cordierite (Mg2Al4Si2O18). Am Mineral. 2006;91:35–8.

    Article  CAS  Google Scholar 

  21. Paukov IE, Belitsky IA, Kovalevskaya YuA. Thermodynamic properties of natural zeolite gmelinite at low temperatures. J Chem Thermodyn. 2001;33:1687–96.

    Article  CAS  Google Scholar 

  22. Dalhus B, Gorbitz CH. DL-aminophenylacetic acid. Acta Cryst C. 1999;55:IUC9900061.

    Google Scholar 

  23. Moggah SA, Allan DR, Clark SJ, Gutmann MJ, Parsons S, Pulham CR, et al. High-pressure polymorphism in L-cysteine: the crystal structures of L-cysteine-III and L-cysteine-IV. Acta Cryst B. 2006;62:296–309.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by an Interdisciplinary Integration Project of the SB RAS No. 109, as well as by grants from RFBR (09-03-00451-a) and BRHE (NO-008-XI and RUX0-008-NO-06/BP4M08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Boldyreva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paukov, I.E., Kovalevskaya, Y.A. & Boldyreva, E.V. Low-temperature heat capacity of L- and DL-phenylglycines. J Therm Anal Calorim 108, 1311–1316 (2012). https://doi.org/10.1007/s10973-009-0665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0665-4

Keywords

Navigation