Skip to main content
Log in

Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Transparent glasses of SrBi2B2O7 (SBBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The glass transition (T g) and the crystallization parameters [crystallization activation energy (E cr) and Avrami exponent (n)] were evaluated under non-isothermal conditions using DSC. There was a close agreement between the activation energies for the crystallization process determined by Augis and Bennet and Kissinger methods. The variation of local activation energy [E c(x)] that was determined by Ozawa method, decreased with the fraction of crystallization (x). The Avrami exponent (n(x)) increased with the increase in fraction of crystallization (x) suggesting that there was a change over in the crystallization process from the surface to the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takahashi Y, Benino Y, Fujiwara T, Komatsu T. Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5. J Appl Phys. 2001;89:5282–7.

    Article  CAS  Google Scholar 

  2. Murugan GS, Varma KBR, Takahashi Y, Komatsu T. Nonlinear-optic and ferroelectric behavior of lithium borate–strontium bismuth tantalate glass–ceramic composite. Appl Phys Lett. 2001;78:4019–21.

    Article  Google Scholar 

  3. Prasad NS, Varma KBR, Takahashi Y, Benino Y, Fujiwara T, Komatsu T. Evolution and characterization of fluorite-like nano-SrBi2Nb2O9 phase in the SrO–Bi2O3–Nb2O5–Li2B4O7 glass system. J Solid State Chem. 2003;173:209–15.

    Article  Google Scholar 

  4. Barbier J, Cranswick LMD. The non-centrosymmetric borate oxides, MBi2B2O7 (M=Ca, Sr). J Solid State Chem. 2006;179:3958–64.

    Article  CAS  Google Scholar 

  5. Ray CS, Zang T, Reis ST, Brow RK. Determining kinetic parameters for isothermal crystallization of glasses. J Am Ceram Soc. 2007;90:769–73.

    Article  CAS  Google Scholar 

  6. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  7. Mehta N, Kumar A. Comparative analysis of calorimetric studies in Se90M10 (M=In, Te, Sb) chalcogenide glasses. J Therm Anal Calorim. 2007;87:345–50.

    Article  Google Scholar 

  8. Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim. 2008;94:427–32.

    Article  Google Scholar 

  9. Nitsch K, Rodová M. Crystallization study of Na–Gd phosphate glass using non-isothermal DTA. J Therm Anal Calorim. 2008;91:137–40.

    Article  CAS  Google Scholar 

  10. Avrami MJ. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  11. Avrami MJ. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  12. Avrami MJ. Granulation phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  13. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  14. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  15. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  16. Bansal NP, Doremus RH, Bruce AJ, Moynihan CT. Kinetics of crystallization of ZrF4–Ba2–LaF3 glass by differential scanning calorimetry. J Am Ceram Soc. 1983;66:233–8.

    Article  CAS  Google Scholar 

  17. Prasad NS, Varma KBR. Crystallization kinetics of the LiBO2–Nb2O5 glass using differential thermal analysis. J Am Ceram Soc. 2005;88:357–61.

    Article  CAS  Google Scholar 

  18. Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mat Sci. 1984;19:291–6.

    Article  CAS  Google Scholar 

  19. Calka A, Radlinski AP. The local value of the avrami exponent: a new approach to devitrification of glassy metallic ribbons. Mater Sci Eng. 1988;97:241–6.

    Article  CAS  Google Scholar 

  20. Lu W, Yan B, Huang W. Complex primary crystallization kinetics of amorphus Finemet alloy. J Non Cryst Solids. 2005;351:3320–4.

    Article  CAS  Google Scholar 

  21. Lu K, Wang JT. Activation energies for crystal nucleation and growth in amorphous alloys. Mater Sci Eng A. 1991;133:500–3.

    Article  Google Scholar 

  22. Ozawa T. Applicability of Friedman plot. J Therm Anal. 1986;31:547–51.

    Article  CAS  Google Scholar 

  23. Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non Cryst Solids. 1983;54:253–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. R. Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majhi, K., Varma, K.B.R. Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods. J Therm Anal Calorim 98, 731–736 (2009). https://doi.org/10.1007/s10973-009-0105-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0105-5

Keywords

Navigation