Skip to main content
Log in

Thermo-infrared-spectroscopy analysis of dimethylsulfoxide-kaolinite intercalation complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dimethylsulfoxide (DMSO) kaolinite complexes of low-and high-defect kaolinites were studied by thermo-IR-spectroscopy analysis. Samples were gradually heated up to 170°C, three hours at each temperature. After cooling to room temperature, they were pressed into KBr disks and their spectra were recorded. From the spectra two types of complexes were identified. In the spectrum of type I complex two bands were attributed to asymmetric and symmetric H-O-H stretching vibrations of intercalated water, bridging between DMSO and the clay-O-planes. As a result of H-bonds between intercalated water molecules and the O-planes, Si-O vibrations of the clay framework were perturbed, in the low-defect kaolinite more than in the high-defect. Type II complex was obtained by the thermal escape of the intercalated water. Consequently, the H-O-H bands were absent from the spectrum of type II complex and the Si-O bands were not perturbed. Type I complex was present up to 120°C whereas type II between 130 and 150°C. The presence of intercalated DMSO was proved from the appearance of methyl bands. These bands decreased with temperature due to the thermal evolution of DMSO but disappeared only in spectra of samples heated at 160°C. Intercalated DMSO was H-bonded to the inner-surface hydroxyls and vibrations associated with this group were perturbed. Due to the thermal evolution of DMSO the intensities of the perturbed bands decreased with the temperature. They disappeared at 160°C together with the methyl bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mata-Arjona, A. Ruiz-Amil and E. Inaraja-Martin, Proc. Reunion Hispano-Belga de Minerales de la Arcilla, Consejo Superior de Investigaciones Cientificas, Madrid 1970, p. 115.

  2. J. G. Thompson and C. Cuff, Clays Clay Miner., 33 (1985) 490.

    Article  CAS  Google Scholar 

  3. M. Raupach, P. F. Barron and J. G. Thompson, Clays Clay Miner., 35 (1987) 208.

    Article  CAS  Google Scholar 

  4. F. I. Franco Duro, J. Gonzales Jesus and M. D. Ruiz Cruz, Proc. 2nd Mediterranean Clay Meeting, Aveiro 1998, (C. S. F. Gomes, Ed.), 2 (1998) 249.

  5. F. I. Franco, M. D. Ruiz Cruz and M. Bentabol, Proc. 1st Latin American Clay Conf., Funchal 2000, (C. S. F. Gomes, Ed.) 2 (2000) 161.

  6. J. Kristóf, R. L. Frost, W. N. Martens and E. Horváth, Langmuir, 18 (2002) 1244.

    Article  Google Scholar 

  7. E. Horváth, J. Kristóf, R. L. Frost, A. Rédey, V. Vágvölgyi and T. Cseh, J. Therm. Anal. Cal., 71 (2003) 407.

    Article  Google Scholar 

  8. P. M. Costanzo and R. F. Giese, Clays Clay Miner., 33 (1985) 415.

    Article  CAS  Google Scholar 

  9. P. M. Costanzo and R. Giese, Clays Clay Miner., 38 (1990) 160.

    Article  CAS  Google Scholar 

  10. J. Kristóf, R. L. Frost, J. T. Kloprogge, E. Horváth and M. Gábor, J. Therm. Anal. Cal., 56 (1999) 885.

    Article  Google Scholar 

  11. I. Lapides and S. Yariv, Proc. ICTAC Congress 2008, paper in preparation.

  12. S. Yariv, I. Lapides, A. Nasser, N. Lahav, I. Brodsky and K. H. Michaelian, Clays Clay Miner., 48 (2000) 10.

    Article  CAS  Google Scholar 

  13. S. Olejnik, L. A. G. Aylmore, A. M. Posner and J. P. Quirk, J. Phys. Chem., 72 (1968) 241.

    Article  CAS  Google Scholar 

  14. C. T. Johnston, G. Sposito, D. F. Bocian and R. R. Birge, J. Phys. Chem., 88 (1984) 5959.

    Article  CAS  Google Scholar 

  15. S. Yariv, in Organo-clay complexes and interactions, (S. Yariv and H. Cross, Eds), Marcel Dekker, New York 2002, p. 345.

    Google Scholar 

  16. V. C. Farmer and J. D. Russell, Spectrochim. Acta, 22 (1966) 389.

    CAS  Google Scholar 

  17. J. G. Miller and T. D. Oulton, Clays Clay Miner., 18 (1970) 313.

    Article  CAS  Google Scholar 

  18. J. G. Miller and T. D. Oulton, Clays Clay Miner., 20 (1972) 389.

    Article  CAS  Google Scholar 

  19. S. Yariv, I. Lapides, K. H. Michaelian and N. Lahav, J. Therm. Anal. Cal., 56 (1999) 865.

    Article  CAS  Google Scholar 

  20. R. L. Frost, J. Kristóf, G. N. Paroz and J. T. Kloprogge, J. Phys. Chem. B, 102 (1998) 8519.

    Article  CAS  Google Scholar 

  21. H. W. van der Marel, H. Beutelspacher, Atlas of infrared spectroscopy of clay minerals, Elsevier, Amsterdam 1976.

    Google Scholar 

  22. L. H. Little, Infrared Spectra of Adsorbed Species, Academic Press, London 1966, p. 233.

    Google Scholar 

  23. L. Heller-Kallai, E. Huard and R. Prost, Clay Miner., 26 (1991) 245.

    Article  CAS  Google Scholar 

  24. S. Yariv, Clay Miner., 21 (1986) 925.

    Article  CAS  Google Scholar 

  25. S. Yariv, in ’Modern Approach to Wettability’, (M. E. Schrader and G. Loeb, Eds), Plenum Press, New York 1992, p. 279.

    Google Scholar 

  26. S. Yariv, Clays Clay Miner., 1975 (23) 80.

  27. S. Yariv, Powder Technol., 12 (1975) 131.

    Article  CAS  Google Scholar 

  28. S. Yariv and H. Cross, ’Geochemistry of Colloid Systems’, Springer-Verlag, Berlin 1979, p. 26.

    Google Scholar 

  29. F. A. Cotton and W. D. Horrocks, Spectrochim. Acta, 17 (1961) 134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yariv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yariv, S., Lapides, I. Thermo-infrared-spectroscopy analysis of dimethylsulfoxide-kaolinite intercalation complexes. J Therm Anal Calorim 94, 433–440 (2008). https://doi.org/10.1007/s10973-008-9459-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9459-3

Keywords

Navigation