Skip to main content
Log in

Compensation effect as a consequence of vibrational energy transfer in homogeneous and isotropic heat field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

By kinetics of decomposition of solids in both isothermal and non-isothermal conditions, the compensation effect (CE) is rather a rule.

The topic of this work is to suggest an activation mechanism which leads to the dependences similar with CE.

The solid is assimilated to a system of the harmonic oscillator with a Bose-Einstein energy distribution.

Considering an activation process due to a vibrational energy transfer from a homogeneous and isotropic field of thermic oscillators to the solid-state oscillator, the thermodynamic functions are in the relationship

$$ \Delta S^ * = \Delta H^ * /T_{is} $$

where ΔH* and ΔS* are the activation functions and T is is the isokinetic temperature.

Taking into account the definitions of H and S by means of the partition function, the isokinetic temperature is assimilated with the characteristic temperature

$$ T = \hbar \theta /k_B $$

An important consequence, a correlation between the isokinetic temperature and the spectroscopic wavenumber of the activated bond, is illustrated by a number of decomposition reactions under non-isothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Constable, Proc. R. Soc. London Ser. A, 108 (1925) 355.

    Article  CAS  Google Scholar 

  2. E. Segal and D. Fatu, Introduction to Non-Isothermal Kinetics, Publishing House of the Romanian Academy, Bucharest, 1983 (in Romanian).

  3. D. S. Dias, M. S. Crespi, C. S. Ribeiro, I. L. S. Fernandes and H. M. G. Cerqueira, J. Therm. Anal. Cal., 91 (2008) 409.

    Article  CAS  Google Scholar 

  4. A. Corma, F. Llopis, J. B. Monton and S. Weller, J. Catal., 142 (1993).

  5. A. K. Galwey and M. E. Brown, Thermochim. Acta, 386 (2002) 91.

    Article  CAS  Google Scholar 

  6. N. Doca, T. Vlase and G. Vlase, Rev. Roum. Chim., 48 (2003) 955.

    CAS  Google Scholar 

  7. G. C. Bond, Catalysis by Metals, Academic Press, New York 1962.

    Google Scholar 

  8. C. Kemball, Proc. R. Soc. London Ser. A, 207 (1951) 539.

    Article  CAS  Google Scholar 

  9. W. Good and J. Stone, Tetrahedron, 31 (1975) 379.

    Article  Google Scholar 

  10. M. M. Al Omari, M. B. Zughul, J. E. D. Davies and A. A. Badwan, J. Incl. Phenom. Macrocycl. Chem., 57 (2007) 379.

    Article  CAS  Google Scholar 

  11. W. Conner, J. Catal., 78 (1982) 238.

    Article  CAS  Google Scholar 

  12. R. Larsson, Catal. Today, 1 (1987) 99.

    Article  Google Scholar 

  13. R. Larsson, Catal. Lett., 11 (1991) 137.

    Article  CAS  Google Scholar 

  14. R. Larsson, J. Mol. Catal., A129 (1998) 41.

    Article  Google Scholar 

  15. E. Cremen, Allg. Prakt. Chem., 67 (1967) 173.

    Google Scholar 

  16. S. Glasstone, K. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York 1994.

    Google Scholar 

  17. T. Vlase, G. Jurca and N. Doca, Thermochim. Acta, 379 (2001) 59.

    Article  CAS  Google Scholar 

  18. T. Vlase, G. Jurca and N. Doca, Thermochim. Acta, 379 (2001) 65.

    Article  CAS  Google Scholar 

  19. T. Vlase, G. Vlase, A. Chiriac and N. Doca, J. Therm. Anal. Cal., 72 (2003) 839.

    Article  CAS  Google Scholar 

  20. R. Kubo, Statistical Mechanics, North-Holland, Amsterdam 1965.

    Google Scholar 

  21. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-particle Systems, McGraw-Hill, New York 1965.

    Google Scholar 

  22. A. Ben-Naim, Statistical Thermodynamics for Chemists and Biologist, Plenum Press, New York 1992.

    Google Scholar 

  23. G. Herzberg, Molekủlspekten u. Molekủlstruktur, I. Zweiatomige Molekủle, Steinkopff, Drezden-Leipzig 1939.

  24. R. M. Silverstein, G. Clayton Bassler and T. C. Morrell, Spectrometric Identification of the Compounds, 5th Ed., John Wiley Inc., 1995.

  25. N. B. Colthup, L. H. Daly and S. E. Wiberlej, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York 1964.

    Google Scholar 

  26. T. Vlase, G. Vlase, M. Doca and N. Doca, J. Therm. Anal. Cal., 72 (2003) 597.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Doca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop, N., Vlase, G., Vlase, T. et al. Compensation effect as a consequence of vibrational energy transfer in homogeneous and isotropic heat field. J Therm Anal Calorim 92, 313–317 (2008). https://doi.org/10.1007/s10973-007-8723-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8723-2

Keywords

Navigation