Skip to main content
Log in

Kinetic models comparison for steam gasification of different nature fuel chars

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reactivity in steam of five different types of solid fuels (two coals, two types of biomass and a petcoke) has been studied. The fuel chars were obtained by pyrolysis in a fixed-bed reactor at a temperature of 1373 K for 30 min. The gasification tests were carried out by thermogravimetric analysis (TG) at different temperatures and steam concentrations. The reactivity study was conducted in the kinetically controlled regime and three representative gas-solid models, volumetric model (VM), grain model (GM) and random pore model (RPM), were applied in order to describe the reactive behaviour of the chars during steam gasification.

The kinetic parameters of these models were derived and the ability of the models to predict conversion and char reactivity during gasification was assessed. The best model for describing the behaviour of the samples was the RPM. The effect of the partial pressure of steam in gasification was studied, and the reaction order with respect to steam was determined. The reactivity of the chars was compared by means of a reactivity index. Biomass exhibited a higher reactivity than coals and petcoke. However, significant differences in reactivity were observed between the two types of biomass used, which could be due to catalytic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Dunn, Int. J. Hydrogen Energy, 27 (2002) 235.

    Article  CAS  Google Scholar 

  2. V. Strezov, B. Moghtaderi and J. A. Lucas, J. Therm. Anal. Cal., 72 (2003) 1041.

    Article  CAS  Google Scholar 

  3. L. Nuñez-Regueira, L. Rodríguez-Añón, J. Proupin-Castiñeiras and A. Romero-García, J. Therm. Anal. Cal., 66 (2001) 281.

    Article  Google Scholar 

  4. C. Wolters and M. Kanaar, Proceedings of the 2nd International Conference on Clean Coal Technologies for our Future, Castiadas (Calgari, Sardinia), 10–12 May, 2005.

  5. R. C. Everson and H. W. J. P. Neomagus, Fuel, 85 (2006) 1076.

    Article  CAS  Google Scholar 

  6. L. Douglas and P. J. Smith, Coal Combustion and Gasification, Plenum Press, New York 1985.

    Google Scholar 

  7. A. Molina and F. Mondragón, Fuel, 77 (1998) 1831.

    Article  CAS  Google Scholar 

  8. K. Miura, K. Hashimoto and P. Silverston, Fuel, 68 (1989) 1461.

    Article  CAS  Google Scholar 

  9. C. V. Calahorro, T. C. Cano, A. B. García and V. G. Serrano, J. Thermal Anal., 32 (1987) 1063.

    Article  Google Scholar 

  10. C. V. Calahorro, A. B. García and V. G. Serrano, J. Thermal Anal., Cal., 30 (1985) 597.

    Article  Google Scholar 

  11. L. Zhang, J. Huang, Y. Fang and Y. Wang, Energy Fuels, 20 (2006) 1201.

    Article  CAS  Google Scholar 

  12. M. Sakawa, Y. Sakurai and Y. Hara, Fuel, 61 (1982) 717.

    Article  CAS  Google Scholar 

  13. M. Sahimi, G. R. Gavalas and T. T. Tsotsis, Chem. Eng. Sci., 45 (1990) 1443.

    Article  CAS  Google Scholar 

  14. H. Barkia, L. Belkbir and S. A. A. Jayaweera, J. Therm. Anal. Cal., 76 (2004) 623.

    Article  CAS  Google Scholar 

  15. I. Y. Elbyli and S. Piskin, J. Therm. Anal. Cal., 83 (2006) 721.

    Article  Google Scholar 

  16. H. Barkia, L. Belkbir and S. A. A. Jayaweera, J. Therm. Anal. Cal., 86 (2006) 121.

    Article  CAS  Google Scholar 

  17. M. V. Kök and A. G. Iscan, J. Therm. Anal. Cal., 88 (2007) 657.

    Article  Google Scholar 

  18. G. Q. Lu and D. D. Do, Carbon, 32 (1994) 247.

    Article  CAS  Google Scholar 

  19. M. Ishida and C. Y. Wen, Chem. Eng. Sci., 26 (1971) 1031.

    Article  CAS  Google Scholar 

  20. J. Székely and J. W. Evans, Chem. Eng. Sci., 26 (1970) 1091.

    Article  Google Scholar 

  21. S. K. Bhatia and D. D. Perlmutter, AIChE J., 26 (1980) 379.

    Article  CAS  Google Scholar 

  22. R. P. W. J. Struis, C. von Scala, S. Stucki and R. Prins, Chem. Eng. Sci., 57 (2002) 3581.

    Article  CAS  Google Scholar 

  23. R. P. W. J. Struis, C. von Scala, S. Stucki and R. Prins, Chem. Eng. Sci., 57 (2002) 3593.

    Article  CAS  Google Scholar 

  24. K. Miura, M. Aimi, T. Naito and K. Hashimoto, Fuel, 65 (1985) 407.

    Article  Google Scholar 

  25. A. Linares-Solano, O. P. Mahajan and P. L. Walker, Fuel, 58 (1979) 327.

    Article  CAS  Google Scholar 

  26. D. P. Ye, J. B. Agnew and D. K. Zhang, Fuel, 77 (1998) 1209.

    Article  CAS  Google Scholar 

  27. T. Takarada, Y. Tamai and A. Tomita, Fuel, 64 (1985) 1438.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rubiera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fermoso, J., Arias, B., Pevida, C. et al. Kinetic models comparison for steam gasification of different nature fuel chars. J Therm Anal Calorim 91, 779–786 (2008). https://doi.org/10.1007/s10973-007-8623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8623-5

Keywords

Navigation