Skip to main content
Log in

Phase transformation in spodumene–diopside glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In situ developments of platelike spodumene–diopside grains were obtained by controlled devitrification of the complex system Li2O–CaO–MgO–Al2O3–SiO2 glass. The crystallization mechanisms of spodumene–diopside glass were measured by isothermal and non-isothermal processes using classical and differential thermal analysis techniques. The Avrami constant n was 2.0–2.1, indicating two-dimensional crystal growth and platelike grains. The crystalline phases precipitated first were high-quartzs.s., then transformed to β-spodumene and diopside. The Flexural strength, fracture toughness and thermal shock resistance (in 20°C water) increased from 145 MPa, 1.3 MPa m1/2, 800°C (pure spodumene) to 197 MPa, 2.9 MPa m1/2 and 920°C (spodumene–diopside) with low thermal expansion coefficient (from 3∼9·10–7 to 11.8·10–7 K–1). This mean in situ developments of platelike spodumene–diopside grains reinforced the low thermal expansion coefficient glass-ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P Riello P Canto N Comelato S Polizzi M Verita G Fagherazzi H Hofmeister S Hopfe (2001) J. Non-Cryst. Solids 288 127 Occurrence Handle10.1016/S0022-3093(01)00518-X Occurrence Handle1:CAS:528:DC%2BD3MXlsF2ht78%3D

    Article  CAS  Google Scholar 

  2. L Barbieri C Leonelli T Manfredini C Siligardi AB Corradi (1997) J. Am. Ceram. Soc. 80 3077 Occurrence Handle1:CAS:528:DyaK1cXjt1Srug%3D%3D Occurrence Handle10.1111/j.1151-2916.1997.tb03235.x

    Article  CAS  Google Scholar 

  3. L Arnault M Gerland A Riviere (2000) J. Mater. Sci. 35 2331 Occurrence Handle10.1023/A:1004716018522 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Cru7w%3D

    Article  CAS  Google Scholar 

  4. H Scheidler E Rodek (1989) Ceram. Bull. 68 1926 Occurrence Handle1:CAS:528:DyaK3cXisVGjsg%3D%3D

    CAS  Google Scholar 

  5. AWA Elshennawi EMA Hamzawy GA Khater AA Omar (2001) Ceram. Inter. 27 725 Occurrence Handle10.1016/S0272-8842(00)00105-X Occurrence Handle1:CAS:528:DC%2BD3MXmt1Gmt7g%3D

    Article  CAS  Google Scholar 

  6. R Cio P Pernice A Aronne G Quattroni (1993) J. Mater. Sci. 28 6591 Occurrence Handle10.1007/BF00356400

    Article  Google Scholar 

  7. YQ Wu YF Zhang XX Huang JK Guo (2001) J. Eur. Ceram. Soc. 21 581 Occurrence Handle10.1016/S0955-2219(00)00245-4 Occurrence Handle1:CAS:528:DC%2BD3MXhvFWmtbc%3D

    Article  CAS  Google Scholar 

  8. L Arnault M Gerland A Riviere (2000) J. Mater. Sci. 35 2331 Occurrence Handle10.1023/A:1004716018522 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Cru7w%3D

    Article  CAS  Google Scholar 

  9. M Avrami (1939) J. Chem. Phys. 7 1103, 9, 177 Occurrence Handle10.1063/1.1750380

    Article  Google Scholar 

  10. WA Johnson KF Mehl (1939) Trans. AIME 135 416

    Google Scholar 

  11. HE Kissinger (1956) J. Res. Nat. Bureau Stand. 57 217 Occurrence Handle1:CAS:528:DyaG2sXhsFKiuw%3D%3D

    CAS  Google Scholar 

  12. I Waclawska M Szumera (2003) J. Therm. Anal. Cal. 72 1065 Occurrence Handle10.1023/A:1025059424522 Occurrence Handle1:CAS:528:DC%2BD3sXmtVKrs7c%3D

    Article  CAS  Google Scholar 

  13. M Ciecinska (2003) J. Therm. Anal. Cal. 72 199 Occurrence Handle10.1023/A:1023932122511 Occurrence Handle1:CAS:528:DC%2BD3sXktVymtb4%3D

    Article  CAS  Google Scholar 

  14. L Stoch (2004) J. Therm. Anal. Cal. 77 7 Occurrence Handle10.1023/B:JTAN.0000033182.90571.ce Occurrence Handle1:CAS:528:DC%2BD2cXlt1ynurw%3D

    Article  CAS  Google Scholar 

  15. J Malek (1999) J. Therm. Anal. Cal. 56 763 Occurrence Handle10.1023/A:1010106206509 Occurrence Handle1:CAS:528:DyaK1MXnt1Ghurg%3D

    Article  CAS  Google Scholar 

  16. AM Hu KM Liang F Peng (2004) Thermochim. Acta 413 53 Occurrence Handle10.1016/j.tca.2003.10.025 Occurrence Handle1:CAS:528:DC%2BD2cXhsVOnsbk%3D

    Article  CAS  Google Scholar 

  17. T Ozawa (1986) J. Thermal Anal. 31 547 Occurrence Handle10.1007/BF01914230 Occurrence Handle1:CAS:528:DyaL28XlsVSju70%3D

    Article  CAS  Google Scholar 

  18. JA Augis JE Bennett (1978) J. Thermal Anal. 13 283 Occurrence Handle10.1007/BF01912301 Occurrence Handle1:CAS:528:DyaE1cXktlWnu7c%3D

    Article  CAS  Google Scholar 

  19. YM Sung (2002) J. Mater. Sci. 37 699 Occurrence Handle10.1023/A:1013823410950 Occurrence Handle1:CAS:528:DC%2BD38XitV2lt7s%3D

    Article  CAS  Google Scholar 

  20. C Pãcurariu M Liþã I Lazãu D Tiþa G Kovacs (2003) J. Therm. Anal. Cal. 72 811 Occurrence Handle10.1023/A:1025010013618

    Article  Google Scholar 

  21. JA Griggs KJ Anusavice JJ Mecholsky Jr (2002) J. Mater. Sci. 37 2017 Occurrence Handle10.1023/A:1015255300065 Occurrence Handle1:CAS:528:DC%2BD38XkvVemurw%3D

    Article  CAS  Google Scholar 

  22. JM Rincon M Romero J Marco V Caballer (1998) Mater. Res. Bull. 33 1159 Occurrence Handle10.1016/S0025-5408(98)00109-3 Occurrence Handle1:CAS:528:DyaK1cXltlCgsLc%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin H..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anmin, H., Ming, L. & Dali, M. Phase transformation in spodumene–diopside glass. J Therm Anal Calorim 84, 497–501 (2006). https://doi.org/10.1007/s10973-005-6941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-6941-z

Keywords

Navigation