Skip to main content
Log in

A tannic acid-Cu complex coated dendritic mesoporous silica for enhancing pesticide sustain release and flush resistance on foliage

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pesticides play a crucial role in modern agriculture, yet their widespread use poses a threat to the ecosystem by causing significant environmental damage. In an effort to address this issue, a novel nanopesticide delivery system was developed, utilizing a tannic acid (TA)-Cu combination deposited onto the surface of dendritic mesoporous silica nanoparticles (DMSNs). This innovative approach aims to enhance the efficiency of pesticide utilization. The process involved incorporating Tebuconazole (Teb) into DMSNs using the one-pot sol-gel method. Subsequently, a coating was applied through the sequential addition of TA and CuCl2 to an aqueous dispersion of Teb@DMSNs. The resulting nanopesticide, named TA@Teb@DMSNs, exhibited a spherical shape and achieved an impressive Teb loading rate of nearly 26.6%. Kinetic studies on Teb release revealed that TA@Teb@DMSNs demonstrated characteristics conducive to controlled and sustained release. The adhesion quality of TA@Teb@DMSNs on Aesculus chinensis Bunge leaves was confirmed through a comparative study with Teb@DMSNs. Additionally, when compared to Teb suspension, TA@Teb@DMSNs exhibited superior antifungal activity against Fusarium esculenta wilt over an extended period. Consequently, the TA@Teb@DMSNs constructed in this research might be used as an efficient nanopesticide formulation for advancing the sustainable development of agriculture.

Graphical Abstract

A novel nanopesticide delivery system is prepared by depositing of tannic acid-Cu complex on dendritic mesoporous silica nanoparticles, which effectively improves the adhesion and effective time of pesticide on the leaf.

Highlights

  • A novel nanopesticide delivery system has been developed through the deposition of tannic acid-Cu complex onto dendritic mesoporous silica nanoparticles (DMSNs).

  • Tebuconazole-loaded TA@Teb@DMSNs demonstrate a sustained release profile.

  • TA@Teb@DMSNs demonstrate superior adhesive properties on Aesculus chinensis Bunge leaves.

  • TA@Teb@DMSNs exhibit outstanding antifungal efficacy against Fusarium esculenta wilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rizzati V, Briand O, Guillou H, Gamet-Payrastre L (2016) Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem Biol Interact 254:231–246

    Article  CAS  PubMed  Google Scholar 

  2. Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP (2016) Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. J Environ Manag 184:157–169

    Article  CAS  Google Scholar 

  3. Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, Singla N (2020) Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol Environ Saf 201:110812

    Article  CAS  PubMed  Google Scholar 

  4. Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29

    Article  Google Scholar 

  5. Mark A, Matocha LJK, Reddy KN, Senseman SA, Locke MA, Steinriede RW, Palmer EW (2006) Foliar washoff potential and simulated surface runoff losses of trifloxysulfuron in cotton. J Agric Food Chem 54:5498–5502

    Article  Google Scholar 

  6. Fernández V, Orera I, Abadía J, Abadía A (2015) Foliar iron-fertilisation of fruit trees: present knowledge and future perspectives – a review. J Horticultural Sci Biotechnol 84:1–6

    Article  Google Scholar 

  7. Sørensen G, Nielsen AL, Pedersen MM, Poulsen S, Nissen H, Poulsen M, Nygaard SD (2010) Controlled release of biocide from silica microparticles in wood paint. Prog Org Coat 68:299–306

    Article  Google Scholar 

  8. Pimentel D (2005) Environmental and Economic Costs of the Application of Pesticides Primarily in the United States. Environ, Dev Sustainability 7:229–252

    Article  Google Scholar 

  9. Parker AM, Lester Y, Spangler EK, von Gunten U, Linden KG (2017) UV/H2O2 advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays. Chemosphere 182:477–482

    Article  CAS  PubMed  Google Scholar 

  10. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. La Merrill M, Emond C, Kim MJ, Antignac JP, Le Bizec B, Clement K, Birnbaum LS, Barouki R (2013) Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ Health Perspect 121:162–169

    Article  PubMed  Google Scholar 

  12. Smith K, Evans DA, El-Hiti GA (2008) Role of modern chemistry in sustainable arable crop protection. Philos Trans R Soc Lond B Biol Sci 363:623–637

    Article  CAS  PubMed  Google Scholar 

  13. Hamming LM, Fan XW, Messersmith PB, Brinson LC (2008) Mimicking mussel adhesion to improve interfacial properties in composites. Compos Sci Technol 68:2042–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ochs CJ, Hong T, Such GK, Cui J, Postma A, Caruso F (2011) Dopamine-Mediated Continuous Assembly of Biodegradable Capsules. Chem Mater 23:3141–3143

    Article  CAS  Google Scholar 

  15. Guvendiren M, Brass DA, Messersmith PB, Shull KR (2009) Adhesion of DOPA-Functionalized Model Membranes to Hard and Soft Surfaces. J Adhes 85:631–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ao M, Zhu Y, He S, Li D, Li P, Li J, Cao Y (2013) Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-release performance. Nanotechnology 24:035601

    Article  PubMed  Google Scholar 

  17. Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540

    Article  CAS  PubMed  Google Scholar 

  18. Xiao D, Liang W, Xie Z, Cheng J, Du Y, Zhao J (2021) A temperature-responsive release cellulose-based microcapsule loaded with chlorpyrifos for sustainable pest control. J Hazard Mater 403:123654

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Wang D, Butler R, Campbell NL, Long J, Tan B, Duncalf DJ, Foster AJ, Hopkinson A, Taylor D, Angus D, Cooper AI, Rannard SP (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3:506–511

    Article  CAS  PubMed  Google Scholar 

  20. Liang Y, Fan C, Dong H, Zhang W, Tang G, Yang J, Jiang N, Cao Y (2018) Preparation of MSNs-Chitosan@Prochloraz Nanoparticles for Reducing Toxicity and Improving Release Properties of Prochloraz. ACS Sustain Chem Eng 6:10211–10220

    Article  CAS  Google Scholar 

  21. Neves J, Cardoso DN, Malheiro C, Kah M, Soares AMVM, Wrona FJ, Loureiro S (2019) Copper toxicity to Folsomia candida in different soils: a comparison between nano and conventional formulations. Environ Chem 16:419

    Article  CAS  Google Scholar 

  22. Gao Y, Xiao Y, Mao K, Qin X, Zhang Y, Li D, Zhang Y, Li J, Wan H, He S (2020) Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem Eng J 383:123169

    Article  CAS  Google Scholar 

  23. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  24. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  25. Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  PubMed  Google Scholar 

  26. Zhao X, Cui H, Chen W, Wang Y, Cui B, Sun C, Meng Z, Liu G (2014) Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One 9:e98919

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  28. Guha T, Gopal G, Kundu R, Mukherjee A (2020) Nanocomposites for Delivering Agrochemicals: A Comprehensive Review. J Agric Food Chem 68:3691–3702

    Article  CAS  PubMed  Google Scholar 

  29. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  30. Wu D, Wang J-N, Wu S-Z, Chen Q-D, Zhao S, Zhang H, Sun H-B, Jiang L (2011) Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding. Adv Funct Mater 21:2927–2932

    Article  CAS  Google Scholar 

  31. Kaziem AE, Gao Y, He S, Li J (2017) Synthesis and Insecticidal Activity of Enzyme-Triggered Functionalized Hollow Mesoporous Silica for Controlled Release. J Agric Food Chem 65:7854–7864

    Article  CAS  PubMed  Google Scholar 

  32. Yi Z, Hussain HI, Feng C, Sun D, She F, Rookes JE, Cahill DM, Kong L (2015) Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS Appl Mater Interfaces 7:9937–9946

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Wang G, Qin Y, Chen L, Zhou C, Qiao L, Liu H, Jia C, Lei J, Ji Y (2022) Sustainable nano-pesticide platform based on Pyrethrins II for prevention and control Monochamus alternatus. J Nanobiotechnology 20:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao W, Liu Y, Zhang P, Zhou P, Wu Z, Lou B, Jiang Y, Shakoor N, Li M, Li Y, Lynch I, Rui Y, Tan Z (2022) Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NanoImpact 28:100420

    Article  CAS  PubMed  Google Scholar 

  35. Diaz-Blancas V, Medina DI, Padilla-Ortega E, Bortolini-Zavala R, Olvera-Romero M, Luna-Barcenas G (2016) Nanoemulsion Formulations of Fungicide Tebuconazole for Agricultural Applications. Molecules 21:1271

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jurasekova Z, Jutkova A, Kozar T, Stanicova J (2022) Vibrational characterization of the pesticide molecule Tebuconazole. Spectrochimica Acta Part A: Mol Biomolecular Spectrosc 268:120629

    Article  CAS  Google Scholar 

  37. Jonsdottir SO, Reffstrup TK, Petersen A, Nielsen E (2016) Physicologically Based Toxicokinetic Models of Tebuconazole and Application in Human Risk Assessment. Chem Res Toxicol 29:715–734

    Article  CAS  PubMed  Google Scholar 

  38. Cordero-Limon L, Shaw MW, Passey TA, Robinson JD, Xu X (2021) Cross-resistance between myclobutanil and tebuconazole and the genetic basis of tebuconazole resistance in Venturia inaequalis. Pest Manag Sci 77:844–850

    Article  CAS  PubMed  Google Scholar 

  39. Baćmaga M, Wyszkowska J, Kucharski J (2021) Bacterial diversity and enzymatic activity in a soil recently treated with tebuconazole. Ecol Indic 123:107373

    Article  Google Scholar 

  40. Geng Y, Ma J, Zhou R, Jia R, Li C, Ma X (2017) Assessment of insecticide risk to human health in groundwater in Northern China by using the China-PEARL model. Pest Manag Sci 73:2063–2070

    Article  CAS  PubMed  Google Scholar 

  41. Yogendraiah Matadha N, Mohapatra S, Siddamallaiah L (2021) Distribution of fluopyram and tebuconazole in pomegranate tissues and their risk assessment. Food Chem 358:129909

    Article  CAS  PubMed  Google Scholar 

  42. Qian K, Shi T, He S, Luo L, liu X, Cao Y (2013) Release kinetics of tebuconazole from porous hollow silica nanospheres prepared by miniemulsion method. Microporous Mesoporous Mater 169:1–6

    Article  CAS  Google Scholar 

  43. Tang J, Ding G, Niu J, Zhang W, Tang G, Liang Y, Fan C, Dong H, Yang J, Li J, Cao Y (2019) Preparation and characterization of tebuconazole metal-organic framework-based microcapsules with dual-microbicidal activity. Chem Eng J 359:225–232

    Article  CAS  Google Scholar 

  44. Mattos BD, Magalhães WLE (2016) Biogenic nanosilica blended by nanofibrillated cellulose as support for slow-release of tebuconazole. J Nanoparticle Res 18:274

  45. Zhou Z, Gao Y, Chen X, Li Yan, Tian Y, Wang H, Li X, Yu X, Cao Y (2023) One-pot facile synthesis of double-shelled mesoporous silica microcapsules with an improved soft-template method for sustainable pest managements. ACS Appl Mater Interfaces 13:39066–39075

    Article  Google Scholar 

  46. Cao L, Zhang H, Zhou Z, Xu C, Shan Y, Lin Y, Huang Q (2018) Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles. Nanoscale 10:20354–20365

    Article  CAS  PubMed  Google Scholar 

  47. Liang Y, Guo M, Fan C, Dong H, Ding G, Zhang W, Tang G, Yang J, Kong D, Cao Y (2017) Development of Novel Urease-Responsive Pendimethalin Microcapsules Using Silica-IPTS-PEI As Controlled Release Carrier Materials. ACS Sustain Chem Eng 5:4802–4810

    Article  CAS  Google Scholar 

  48. Jevremovic A, BoZinovic N, Arsenijevic D, Marmakov S, Nedic Vasiljevic B, Uskokovic-Markovic S, Bajuk-Bogdanovic D, Milojevic-Rakic M (2020) Modulation of cytotoxicity by consecutive adsorption of tannic acid and pesticides on surfactant functionalized zeolites. Environ Sci: Process Impacts 22:2199–2211

    CAS  PubMed  Google Scholar 

  49. Park M, Komarneni S (1998) Stepwise functionalization of mesoporous crystalline silica materials. Microporous Mesoporous Mater 25:75–80

  50. Symonds BL, Thomson NR, Lindsay CI, Khutoryanskiy VV (2016) Rainfastness of Poly(vinyl alcohol) Deposits on Vicia faba Leaf Surfaces: From Laboratory-Scale Washing to Simulated Rain. ACS Appl Mater Interfaces 8:14220–14230

    Article  CAS  PubMed  Google Scholar 

  51. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev 116:2602–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu C, An X, Gao S, Su L (2015) Self-assembly of cuprous oxide nanoparticles supported on reduced graphene oxide and their enhanced performance for catalytic reduction of nitrophenols. RSC Adv 5:71259–71267

    Article  CAS  Google Scholar 

  53. Cho JH, Swanson CJ, Chen J, Li A, Lippert LG, Boye SE, Rose K, Sivaramakrishnan S, Chuong CM, Chow RH (2017) The GCaMP-R Family of Genetically Encoded Ratiometric Calcium Indicators. ACS Chem Biol 12:1066–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Jiangsu Province Natural Science Foundation (BK20130969), Jiangsu Forestry Science and Technology Innovation and Promotion Project(LYKJ-Nanjing[2022]02).

Author information

Authors and Affiliations

Authors

Contributions

Peng Xu, Chaoqun You and Dejun Hao conceived of and designed the experiments, analyzed the data and wrote the manuscript. Peng Xu, Shasha Wang and Wei Dai performed most of the experiments. Wei Dai and Shasha Wang characterized microspheres. Weishan Shi, Gang Xing, Zhaogui Wang, Shasha Wang and Qun Li contributed to the antibacterial test. Shasha Wang assisted with manuscript preparation. All authors reviewed the manuscript. We also thank the Advanced Analysis and Testing Center, Nanjing Forestry University for sample tests.

Corresponding author

Correspondence to Dejun Hao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Wang, S., Dai, W. et al. A tannic acid-Cu complex coated dendritic mesoporous silica for enhancing pesticide sustain release and flush resistance on foliage. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06383-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06383-z

Keywords

Navigation