Skip to main content
Log in

Structural and magnetic properties of GdFeO3 nanomaterial prepared through one-step sol-gel auto combustion technique

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The Present study focuses on the structural and magnetic properties of Gadolinium orthoferrite specimen synthesize using one-step sol-gel auto combustion method. The Rietveld refinement of XRD pattern confirms the orthorhombic structure of the GdFeO3 nanomaterial with the Pbnm space group. SEM analysis reveals that the particles exhibit dimensions within the nano regime. FTIR and Raman spectra show the presence of all the modes associated with GdFeO3. Magnetic isotherm recorded at room temperature shows the antiferromagnetic behaviour of the sample. Magnetic field-induced spin reorientation transition is observed to be broad around 5 K. The fitting of modified Curie–Weiss law results in larger value of µeff as compared to theoretical value. The observed anomalous results, in contrast to earlier studies, may have originated from modifications in the microstructure.

Graphical Abstract

Highlights

  • Synthesis of GdFeO3 nanoparticles using single step auto combustion technique.

  • Structural study of GdFeO3 using X-ray diffraction and Raman Spectroscopy.

  • Temperature and field dependent Magnetic property study of GdFeO3.

  • Contribution of temperature independent magnetic susceptibility in total magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peña MA, Fierro JLG (2001) Chemical Structures and Performance of Perovskite Oxides. Chem Rev 101(7):1981–2018. https://doi.org/10.1021/cr980129f

    Article  CAS  PubMed  Google Scholar 

  2. Schmool DS, Keller N, Guyot M, Krishnan R, Tessier M (1999) Evidence of very high coercive fields in orthoferrite phases of PLD grown thin films. J Magn Magn Mater 195(2):291–298. https://doi.org/10.1016/S0304-8853(99)00102-X

    Article  CAS  Google Scholar 

  3. Traversa E, Matsushima S, Okada G, Sadaoka Y, Sakai Y, Watanabe K (1995) NO2 sensitive LaFeO3 thin films prepared by r.f. sputtering. Sens Actuators B Chem 25(1–3):661–664. https://doi.org/10.1016/0925-4005(95)85146-1

    Article  CAS  Google Scholar 

  4. Keller N, Mistrík J, Višňovský Š (2001) Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures. Eur Phys J B 21:67–73. https://doi.org/10.1007/s100510170214

    Article  CAS  Google Scholar 

  5. Kojima N, Tsushima K (2002) Recent progress in magneto-optics and research on its application (Review). Low Temp Phys 28(7):480–490. https://doi.org/10.1063/1.1496656

    Article  CAS  Google Scholar 

  6. Sivakumar M, Gedanken A, Bhattacharya D, Brukental I, Yeshurun Y, Zhong W, Du YW, Felner I, and, Nowik I (2004) Sonochemical Synthesis of Nanocrystalline Rare Earth Orthoferrites Using Fe(CO)5 Precursor. Chem Mater 16(19):3623–3632. https://doi.org/10.1021/cm049345x

    Article  CAS  Google Scholar 

  7. Li L, Wang X (2016) Self-propagating combustion synthesis and synergistic photocatalytic activity of GdFeO3 nanoparticles. J Solgel Sci Technol 79(1):107–113. https://doi.org/10.1007/s10971-016-4017-0

    Article  CAS  Google Scholar 

  8. Ateia E, Hussein B, Singh C, Okasha N (2020) Study of Physical Properties of Co Substituted GdFeO3 Orthoferrites and Evaluation of Their Antibacterial Activity. J Inorg Organomet Polym Mater 30:4320–4328. https://doi.org/10.1007/s10904-020-01635-1

    Article  CAS  Google Scholar 

  9. Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Phys 58(4):321–448. https://doi.org/10.1080/00018730902920554

    Article  CAS  Google Scholar 

  10. Pavlov VV, Akbashev AR, Kalashnikova AM, Rusakov VA, Kaul AR, Bayer M, Pisarev RV (2012) Optical properties and electronic structure of multiferroic hexagonal orthoferrites RFeO3 (R = Ho, Er, Lu). J Appl Phys 111(5):056105. https://doi.org/10.1063/1.3693588

    Article  CAS  Google Scholar 

  11. Ivanov Sergey A et al. (2012) Preparation, structural, dielectric and magnetic properties of LaFeO3–PbTiO3 solid solutions. Mater Res Bull 47(11):3253–3268. https://doi.org/10.1016/j.materresbull.2012.08.003

    Article  CAS  Google Scholar 

  12. Prakash B, Rudramadevi B, Buddhudu S (2014) Analysis of Ferroelectric, Dielectric and Magnetic Properties of GdFeO3 Nanoparticles. Ferroelectr Lett Sect 41:110–122. https://doi.org/10.1080/07315171.2014.956020

    Article  CAS  Google Scholar 

  13. Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima TH, Tokura Y (2009) Composite domain walls in a multiferroic perovskite ferrite. Nat Mater 8(7):558–562. https://doi.org/10.1038/nmat2469

    Article  CAS  PubMed  Google Scholar 

  14. Dzyaloshinsky I (1958) A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids 4(4):241–255. https://doi.org/10.1016/0022-3697(58)90076-3

    Article  CAS  Google Scholar 

  15. Zhou Z, Guo L, Yang H, Liu Q, Ye F (2014) Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J Alloy Compd 583:21–31. https://doi.org/10.1016/j.jallcom.2013.08.129

    Article  CAS  Google Scholar 

  16. Katba S, Jethva S, Vagadia M, Ravalia A, Kuberkar DG (2020) Effect of La-substitution on magnetic properties of ErFeO3 orthoferrites. J Magn Magn Mater 514:167170. https://doi.org/10.1016/j.jmmm.2020.167170

    Article  CAS  Google Scholar 

  17. Panchwanee A, Reddy VR, Gupta A, Sathe VG (2017) Study of spin-phonon coupling and magnetic field induced spin reorientation in polycrystalline multiferroic GdFeO3. Mater Chem Phys 196:205–212. https://doi.org/10.1016/j.matchemphys.2017.04.048

    Article  CAS  Google Scholar 

  18. Bedekar V, Jayakumar OD, Manjanna J, Tyagi AK (2008) Synthesis and magnetic studies of nano-crystalline GdFeO3. Mater Lett 62(23):3793–3795. https://doi.org/10.1016/j.matlet.2008.04.053

    Article  CAS  Google Scholar 

  19. Andris Š, Gundars M (2012) Sol–Gel Auto-Combustion Synthesis of Spinel-Type Ferrite Nanomaterials. Front Mater Sci 6:128–141. https://doi.org/10.1007/s11706-012-0167-3

    Article  Google Scholar 

  20. Coppens P, Eibschutz M (1965) Determination of the crystal structure of yttrium orthoferrite and refinement of gadolinium orthoferrite. Acta Cryst 19:524–531. https://doi.org/10.1107/S0365110X65003833

    Article  CAS  Google Scholar 

  21. Geller S (1956) Crystal Structure of Gadolinium Orthoferrite GdFeO3. J Chem Phys 24:1236–1239. https://doi.org/10.1063/1.1742746

    Article  CAS  Google Scholar 

  22. Alexander L, Klug HP (1950) Determination of Crystallite Size with the X‐Ray Spectrometer. J Appl Phys 21:137–142. https://doi.org/10.1063/1.1699612

    Article  CAS  Google Scholar 

  23. Youjin Z, Ao Z, Xiao-Zhi Y, Hongmei H, Yun F, Chengpeng Y (2012) Cubic GdFeO3 particle by a simple hydrothermal synthesis route and its photoluminescence and magnetic properties. Cryst Eng Comm, 8432–8439, https://doi.org/10.1039/c2ce26233a

  24. Ayodele BV, Hossain MA, Chong SL et al. (2016) Non-isothermal kinetics and mechanistic study of thermal decomposition of light rare earth metal nitrate hydrates using thermogravimetric analysis. J Therm Anal Calorim 125:423–435. https://doi.org/10.1007/s10973-016-5450-6

    Article  CAS  Google Scholar 

  25. Fukuda T, Nakano Y, Takeshita K (2018) Non-isothermal kinetics of the thermal decomposition of gadolinium nitrate. J Nucl Sci Technol 55(10):1193–1197. https://doi.org/10.1080/00223131.2018.1485518

    Article  CAS  Google Scholar 

  26. Karoblis D, Zarkov A, Mazeika K, Baltrunas D, Niaura G, Beganskiene A, Kareiva A (2021) YFeO3-GdFeO3 solid solutions: Sol-gel synthesis, structural and magnetic properties. Solid State Sci 118:106632. https://doi.org/10.1016/j.solidstatesciences.2021.106632

    Article  CAS  Google Scholar 

  27. Bhoi K et al. (2020) The effect of rare-earth Gd-substitution on the structural, magnetic and specific heat properties in orthorhombic DyMnO3 ceramics. J Phys D Appl Phys 53:405301. https://doi.org/10.1088/1361-6463/ab90b3

    Article  CAS  Google Scholar 

  28. Martin R, Vivianne M, Raúl G, Perez-Mazariego J, Escamilla R (2014) Synthesis by molten salt method of the AFeO3 system (A = La, Gd) and its structural, vibrational and internal hyperfine magnetic field characterization. Phys B Condens 443:90–94. https://doi.org/10.1016/j.physb.2014.03.024

    Article  CAS  Google Scholar 

  29. Sólyom J (2007) Fundamentals of the Physics of Solids, Volume 1: Structure and Dynamics, Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72600-5

  30. Levy L-P (2000) Magnetism and Superconductivity. Springer, Berlin, Heidelberg

    Google Scholar 

  31. Paul P, Ghosh PS, Rajarajan AK, Babu PD, Chandrasekhar Rao TV (2021) Ground state spin structure of GdFeO3: A computational and experimental study. J Magn Magn Mater 518:167407. https://doi.org/10.1016/j.jmmm.2020.167407

    Article  CAS  Google Scholar 

  32. Paul P, Rajarajan AK, Babu PD, Chandrasekhar Rao TV (2021) Spin flop type metamagnetic transition in polycrystalline GdFeO3. Solid State Commun 340:114512. https://doi.org/10.1016/j.ssc.2021.114512

    Article  CAS  Google Scholar 

  33. Mathur S, Shen H, Lecerf N, Kjekshus A, Fjellvåg H, Goya GF (2002) Nanocrystalline Orthoferrite GdFeO3 from a Novel Heterobimetallic Precursor. Adv Mater 14:1405–1409. https://doi.org/10.1002/1521-4095

    Article  CAS  Google Scholar 

  34. Panchwanee A, Raghavendra Reddy V, Gupta A, Bharathi A, Phase DM (2018) Study of local distortion and spin reorientation in polycrystalline Mn doped GdFeO3. J Alloy Compd 745:810–816. https://doi.org/10.1016/j.jallcom.2018.02.190

    Article  CAS  Google Scholar 

  35. Raut S, Babu PD, Sharma RK, Pattanayak R, Panigrahi S (2018) Grain boundary-dominated electrical conduction and anomalous optical-phonon behaviour near the Neel temperature in YFeO3 ceramics. J Appl Phys 123(17):174101. https://doi.org/10.1063/1.5012003

    Article  CAS  Google Scholar 

  36. Saha J, Jana YM, Mukherjee GD, Mondal R, Kumar S, Gupta HC (2020) Structure, Mössbauer spectroscopy and vibration phonon spectra in valence-bond force-field model approach for distorted perovskites AFeO3 (A = La, Y). Mater Chem Phys 240:122286. https://doi.org/10.1016/j.matchemphys.2019.122286

    Article  CAS  Google Scholar 

  37. Jakob A, Joakim H, Ralf R, Mikael K, Lars B, Knee CS, Eriksson AK, Eriksson S-G, Michael R, Chaudhury RP (2008) Electron-phonon interactions in perovskites containing Fe and Cr studied by Raman scattering using oxygen-isotope and cation substitution. Phys Rev B, 78, 23, https://doi.org/10.1103/PhysRevB.78.235103

Download references

Acknowledgements

PMS (DST/INSPIRE/03/2022/006309) and JS (DST/INSPIRE/03/2018/000699) acknowledge the Department of Science and Technology for INSPIRE Fellowship. The authors would like to express their sincere thanks to Dr. Megha Vagadia, Department of Physic, Saurashtra University, Rajkot, India for her assistance during the analysis of magnetic measurements.

Author contributions

Ashish Tanna contributed to the conception of the work. Material preparation and analysis of X-ray Diffraction were done by Ashish Tanna and Payalkumari M. Savaliya while analysis of FTIR, SEM and Raman was carried out by Shyam R. Ajudiya. Magnetic measurement was performed by Jayaprakash Sahoo and subsequently, the data was analyzed by Savan Katba. The first draft of the manuscript was prepared by Shyam R. Ajudiya. The final version of the manuscript was read and approved by all of the authors.

Funding

This research work was supported by Student Startup Innovation Project (SSIP) (Grant No. U-0647/SSIP/RKU/SOS/2022-23/18), Government of Gujarat. SRA has received financial support from the SSIP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish R. Tanna.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savaliya, P.M., Ajudiya, S.R., Sahoo, J. et al. Structural and magnetic properties of GdFeO3 nanomaterial prepared through one-step sol-gel auto combustion technique. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06367-z

Keywords

Navigation