Skip to main content
Log in

Investigation of structural, optical, magnetic and photocatalytic properties of Eu–Mg co-doped BiFeO3 nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Perovskite bismuth ferrites have been well investigated for their multifunctional applications for the last two decades. The selective ion doping on these materials improved some physical properties and made those suitable for some practical applications. This work investigates the structural, optical and magnetic properties of sol-gel synthesized Eu–Mg doped BiFeO3 nanoparticles. The synthesized samples were characterized by employing XRD, FTIR, FESEM, UV–visible, VSM and SQUID techniques. A structural phase transition from rhombohedral to orthorhombic was induced by Mg2+ substitution, observed through the Rietveld refinement technique. From microstructural studies, a significant impact of Mg2+ doping was noticed on the shape and size of the nanoparticles forming agglomeration. The prepared samples were found to be direct band gap semiconductors, and a decrease in the optical energy band gap, from 2.17 to 2.02 eV, was observed with Mg2+ doping. The magnetic studies revealed these materials as soft magnetic materials with low retentivity and small coercivity, whereas the strong interactions between magnetic domains enhanced the magnetization almost nine times compared to its parent compound. Furthermore, this study investigates the possible use of these nanomaterials as photocatalysts in degrading organic RhB dye.

Graphical Abstract

Highlights

  • Synthesis of Eu0.04Bi0.96−xMgxFeO3 (x = 0,0.05,0.1) nanoparticles adopting sol-gel method.

  • Characterization of nanoparticles by employing XRD, FTIR, FESEM, UV–visible, VSM and SQUID techniques.

  • Mg2+ doping reduces the optical energy band gap from 2.17 to 2.02 eV.

  • Observation of enhanced magnetization, reduced coercivity with increase in Mg2+ doping.

  • Investigation of photocatalytic degradation of RhB dye under sunlight illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chakrabarti K, Das K, Sarkar B, De S (2011) Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol-gel method. J Appl Phys 110:103905. https://doi.org/10.1063/1.3662178

    Article  CAS  Google Scholar 

  2. Sharma K, Singh A (2016) Advances in photovoltic behavior of ferroelectric BiFeO3. J Nanosci Tech 2(2):85–90

    Google Scholar 

  3. Ahmad W, Kundu S, Ramaswamy K, Venkataraman H (2020) Structural, morphological, optical and dielectric investigations in cobalt doped bismuth ferrite nanoceramics prepared using the sol-gel citrate precursor method. J Alloy Compd 846:156334. https://doi.org/10.1016/j.jallcom.2020.156334

    Article  CAS  Google Scholar 

  4. Sharma S, Saravanan P, Pandey OP, Vinod VTP, Cernik M, Sharma P (2016) Magnetic behaviour of sol–gel driven BiFeO3 thin films with different grain size distribution. J Magn Magn 401:180–187. https://doi.org/10.1016/j.jmmm.2015.10.035

    Article  CAS  Google Scholar 

  5. Islam R, Islam S, Zubair MA, Usama H, Azam S, Sharif A (2017) Evidence of superparamagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics. J Alloy Compd 735:2584–2596. https://doi.org/10.1016/j.jallcom.2017.11.323

    Article  CAS  Google Scholar 

  6. Al-mamun MR, Kader S, Islam MS, Khan MZH (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. Environ Chem Eng 7:103248. https://doi.org/10.1016/j.jece.2019.103248

    Article  CAS  Google Scholar 

  7. Chauhan A, Verma R, Kumari S, Sharma A, Shandilya P, Li X, Batoo K, Imran A, Kulshrestha S, Kumar R (2020) Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci Rep. 10:7881. https://doi.org/10.1038/s41598-020-64419-0

    Article  CAS  Google Scholar 

  8. Sun Q, Li K, Wu S, Han B, Sui L, Dong L (2020) Remarkable improvement of TiO2 for dye photocatalytic degradation by a facile. N J Chem 44:1942–1952. https://doi.org/10.1039/c9nj05120a

    Article  CAS  Google Scholar 

  9. Ahluwalia S, Prakash NT, Prakash R, Pal B (2016) Improved degradation of methyl orange dye using bio-co-catalyst Se nanoparticles impregnated ZnS photocatalyst under UV irradiation. Chem Eng J 306:1041–1048. https://doi.org/10.1016/j.cej.2016.08.028

    Article  CAS  Google Scholar 

  10. Umar M, Mahmood N, Awan S, Fatima S, Mahmood A, Rizwan S (2019) Rationally designed La and Se co-doped bismuth ferrites with controlled bandgap for visible light photocatalysis. RSC Adv 9:17148–17156. https://doi.org/10.1039/c9ra03064f

    Article  CAS  Google Scholar 

  11. Guo R, Fang L, Dong W, Zheng F, Shen M (2010) Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J Phys Chem C 114(49):21390–21396. https://doi.org/10.1021/jp104660a

    Article  CAS  Google Scholar 

  12. Brahma SS, Nanda J, Sahoo NK, Naik B, Das AA (2021) Phase transition, electronic transitions and visible light driven enhanced photocatalytic activity of Eu–Ni co-doped bismuth ferrite nanoparticles. J Phys Chem Solids 153:110018. https://doi.org/10.1016/j.jpcs.2021.110018

    Article  CAS  Google Scholar 

  13. Zhang X, Sui Y, Wang X, Wang Y, Wang Z (2010) Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J Alloy Compd 507:157–161. https://doi.org/10.1016/j.jallcom.2010.07.144

    Article  CAS  Google Scholar 

  14. Li Z, Hou Z, Song W et al. (2016) Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles. Mater Lett 175:207–211. https://doi.org/10.1016/j.matlet.2016.04.016

    Article  CAS  Google Scholar 

  15. He P, Hou Z, Wang C, Li Zhong, Jing J, Bi S (2016) Mutual promotion effect of Pr and Mg co-substitution on structure and multiferroic properties of BiFeO3 ceramic. Ceram Int 43:262–267. https://doi.org/10.1016/j.ceramint.2016.09.148

    Article  CAS  Google Scholar 

  16. Schelhas LT, Quickel TE, Farrell RA, Petkov N, Le van, Tolbert S (2015) Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism. Nat Commun 6:6562. https://doi.org/10.1038/ncomms7562

    Article  CAS  Google Scholar 

  17. Srivastava A, Singh AK, Srivastava ON, Tewari HS (2020) Magnetic and dielectric properties of La and Ni Co-substituted BiFeO3. Front Phys 8. https://doi.org/10.3389/fphy.2020.00282

  18. Verma R, Chauhan A, Neha, Mujasam K, Kumar R, Hadi M, Raslan E (2020) Effect of calcination temperature on structural and morphological properties of bismuth ferrite nanoparticles. Ceram Int 47:3680–3691. https://doi.org/10.1016/j.ceramint.2020.09.220

    Article  CAS  Google Scholar 

  19. Sakar M, Balakumar S, Saravanan P, Bharathkumar S (2015) Compliments of confinements: substitution and dimension induced magnetic origin and bandbending mediated photocatalytic enhancements in Bi1−xDyxFeO3 particulate and fiber nanostructures. Nanoscale 7:10667. https://doi.org/10.1039/c5nr01079a

    Article  CAS  Google Scholar 

  20. Aishwarya K, Navamathavan R (2023) Effect of grain size and orthorhombic phase of La doped BiFeO3 on thermoelectric properties. J Alloy Compd 947:169452. https://doi.org/10.1016/j.jallcom.2023.169452

    Article  CAS  Google Scholar 

  21. Hou P, Liu B, Guo Z, Zhou P, Wang B, Zhao L (2019) Effect of Ho doping on the crystal structure, surface morphology and magnetic property of BiFeO3 thin films prepared via the sol-gel technology. J Alloy Compd 775:59–62. https://doi.org/10.1016/j.jallcom.2018.10.112

    Article  CAS  Google Scholar 

  22. Chauhan S, Kumar M, Chhoker S, Katyal SC, Singh M (2016) Substitution driven structural and magnetic transformation in Ca-doped BiFeO3 nanoparticles. RSC Adv 6:43080–43090. https://doi.org/10.1039/c6ra02316a

    Article  CAS  Google Scholar 

  23. Hasan M, Islam F, Mahbub R, Hossain S, Hakim MA (2015) A soft chemical route to the synthesis of BiFeO3 nanoparticles with enhanced magnetization. Mater Res Bull 73:179–186. https://doi.org/10.1016/j.materresbull.2015.09.007

    Article  CAS  Google Scholar 

  24. Amin M, Muhammad H, Muhammad Y, Ramay S, Saleem M, Abbas S, Atiq S (2017) Multiferroicity in sol – gel synthesized Sr/Mn co-doped ­ nanoparticles. J Mater Sci Mater Electron 28:17234–17244. https://doi.org/10.1007/s10854-017-7654-3

    Article  CAS  Google Scholar 

  25. Syamimi N, Adnan R, Lee H, Hall S, Kobayashi T, Kassim M, Kaus N (2019) Ceram Int 45:15964–15973. https://doi.org/10.1016/j.ceramint.2019.05.105

    Article  CAS  Google Scholar 

  26. Ranjbar M, Ghazi ME, Izadifard M (2019) Investigation of effect of Ni–Mg co‑substitution on structural, optical, and magnetic properties of ­ BiFeO3 nanoparticles grown by a sol–gel method. J Mater Sci Mater Electron 30:10619–10629. https://doi.org/10.1007/s10854-019-01407-9

    Article  CAS  Google Scholar 

  27. Ahmad W, Kundu S, Ramaswamy K, Venkataraman H (2021) Tunable bandgap in cobalt doped bismuth ferrite nanoceramics: The role of annealing temperature. Mater Sci Eng B 271:115299. https://doi.org/10.1016/j.mseb.2021.115299

    Article  CAS  Google Scholar 

  28. Mishra MK, Mahaling RN (2017) Mg doping in BiFeO3: an advantage over pure BiFeO3 having enhanced ferroelectric and optical properties for opto-electronic device applications. Ferroelectrics 520(1):184–195. https://doi.org/10.1080/00150193.2017.1388764

    Article  CAS  Google Scholar 

  29. Cardona-rodríguez A, Ramos E, Carranza-celis D, Vergara-Duran N, da Cruz ASE, Moscoso Londoño O, Béron F, Knobel M, Reiber A, Muraca D, Ramírez JG(2022) Resolving magnetic contributions in BiFeO3 nanoparticles using First order reversal curves J Magn Magn 556:169409. https://doi.org/10.1016/j.jmmm.2022.169409

    Article  CAS  Google Scholar 

  30. Liu J, Fang L, Zheng F, Ju S, Shen M (2009) Enhancement of magnetization in Eu doped BiFeO3 nanoparticles. Appl Phys Lett 95:022511. https://doi.org/10.1063/1.3183580

    Article  CAS  Google Scholar 

  31. Arya GS, Negi NS (2013) Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J Phys D Appl Phys 46:095004. https://doi.org/10.1088/0022-3727/46/9/095004

    Article  CAS  Google Scholar 

  32. Dahiya R, Agarwal A, Sanghi S, Hooda A, Godara P (2015) Structural, magnetic and dielectric properties of Sr and V doped BiFeO3 multiferroics. J Magn Magn Mater 385:175–181. https://doi.org/10.1016/j.jmmm.2015.03.013

    Article  CAS  Google Scholar 

  33. Awasthi RR, Das B (2019) Structural transition and tunable optical, morphological and magnetic properties of Mn-doped BiFeO3 films. Optik 194:162973. https://doi.org/10.1016/j.ijleo.2019.162973

    Article  CAS  Google Scholar 

  34. Arya GS, Sharma RK, Negi NS (2013) Enhanced magnetic properties of Sm and Mn co-doped BiFeO3 nanoparticles at room temperature. Mater Lett 93:341–344. https://doi.org/10.1016/j.matlet.2012.11.131

    Article  CAS  Google Scholar 

  35. Sharma S, Kumar M, Srinet G, Siqueiros J, Herrera O (2021) Structural, Raman analysis and exchange bias effects in Mn doped multiferroic Bi0.80La0.10Ca0.10Fe1-xMnxO3 ceramics. Ceram Int 47:6834–6841. https://doi.org/10.1016/j.ceramint.2020.11.026

    Article  CAS  Google Scholar 

  36. Huang XH, Ding JF, Jiang ZL, Yin YW, Yu QX, Li XG (2009) Dynamic properties of cluster glass in La0 .25 Ca0.75 MnO3 nanoparticles. J Appl Phys 106:083904. https://doi.org/10.1063/1.3246869

    Article  CAS  Google Scholar 

  37. Ur M, Yaqub U, Hussain T, Nadeem N, Zahid M, Nawaz H, Shahid I (2021) Solar driven photocatalytic degradation potential of novel graphitic carbon nitride based nano zero-valent iron doped bismuth ferrite ternary composite Solar driven photocatalytic degradation potential of novel graphitic carbon nitride based nano zero-valent iron doped bismuth ferrite ternary composite. Opt Mater 120:111408. https://doi.org/10.1016/j.optmat.2021.111408

    Article  CAS  Google Scholar 

  38. Ahmadipour M, Arjmand M, Zharif M, Thirmizir A, Le A, Chiam S, Pung S (2020) Synthesis of core/shell-structured CaCu3Ti4O12/SiO2 composites for effective degradation of rhodamine B under ultraviolet light. J Mater Sci Mater Electron 31:19587–19598. https://doi.org/10.1007/s10854-020-04486-1

    Article  CAS  Google Scholar 

  39. Shuga T, Elsayed H, Mohamed A, Maaza M (2022) ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J Phys Chem Solids 160:110313. https://doi.org/10.1016/j.jpcs.2021.110313

    Article  CAS  Google Scholar 

  40. Gu Y, Zhou Y, Zhang W, Guo C, Zhang X, Zhao J, Zhang Y, Zheng H (2021) Optical and magnetic properties of Sm-doped BiFeO3 nanoparticles around the morphotropic phase boundary region. AIP Adv 11:045223. https://doi.org/10.1063/5.0042485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by SERB, Department of Science and Technology, Government of India (FILE NO. EMR/2016/007046)

Author contributions

JN and SP: Conceptualization of research problem and methodology • SP: Synthesis of materials, characterization using XRD, FESEM, UV–Vis, FTIR,VSM • SP and BS: Photocatalytic dye degradation experiment • SP: Data analysis and original draft preparation • JN and SP: Reviewing and editing the paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmayee Nanda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, S., Nanda, J. & Sarangi, B. Investigation of structural, optical, magnetic and photocatalytic properties of Eu–Mg co-doped BiFeO3 nanoparticles. J Sol-Gel Sci Technol 109, 150–161 (2024). https://doi.org/10.1007/s10971-023-06257-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06257-w

Keywords

Navigation